Patents Examined by Granvill D Lee
  • Patent number: 6830960
    Abstract: A stress-relieving heatsink structure and method of forming thereof for an electronic package, for instance, that including a semiconductor chip package which is mounted on a wired carrier, such as a circuitized substrate. The heatsink structure is constituted from a plurality of base structures which are joined along slits so as to impart a degree of flexibility to the electronic package inhibiting the forming of stresses tending to cause delamination of the package components.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: December 14, 2004
    Assignee: International Business Machines Corporation
    Inventors: David J. Alcoe, Randall J. Stutzman
  • Patent number: 6828235
    Abstract: It is an object of the present invention to adjust the transfer environment of a substrate in order to prevent contamination of the substrate surface by impurities. A semiconductor manufacturing apparatus comprises a load-lock chamber 1 in which substrate exchange with the outside is performed, a wafer process chamber 2 in which the wafer is subjected to a predetermined processing, and a transfer chamber 3 in which the wafer is transferred between the load-lock chamber 1 and the wafer process chamber 2. In a semiconductor manufacturing method in which this semiconductor manufacturing apparatus is used to treat a substrate, an inert gas (N2) is supplied to and exhausted from the load-lock chamber 1, the transfer chamber 3, and the wafer process chamber 2 while the substrate is being transferred from the load-lock chamber 1 to the wafer process chamber 2 through the transfer chamber 3, and the substrate transfer is carried out with a predetermined pressure maintained.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: December 7, 2004
    Assignee: Hitachi Kokusai Electric Inc.
    Inventor: Satoshi Takano
  • Patent number: 6821822
    Abstract: A semiconductor assembly (10) in which a semiconductor chip (12) is secured to a die pad (14) is placed in a cavity (38). A support pin (42) which is able to enter into or be pulled out of the cavity (38) is provided in a lower mold (36). The support pin (42) is provided on the axis of a mold gate provided in the lower mold (36) and can be moved up and down by a servomotor (48). The support pin (42) comes in contact with the bottom of the die pad (14) to support the semiconductor assembly (10), thereby preventing the semiconductor assembly (10) from tilting or moving up and down due to the flow of the resin injected into the cavity (38).
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: November 23, 2004
    Assignee: Seiko Epson Corporation
    Inventor: Akira Sato
  • Patent number: 6818479
    Abstract: A highly moisture-sensitive element and method of making such element includes an encapsulation enclosure encapsulating all of the highly moisture-sensitive electronic devices on a substrate and a sealing material positioned between the substrate and the encapsulation enclosure to form a complete seal between the substrate and the encapsulation enclosure around each highly moisture-sensitive electronic device or around groups of highly moisture-sensitive electronic devices.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: November 16, 2004
    Assignee: Eastman Kodak Company
    Inventors: Michael L. Boroson, John Schmittendorf, Jeffrey P. Serbicki
  • Patent number: 6818469
    Abstract: A thin film capacitor is provided with a substrate having a thickness equal to or more than 2 &mgr;m and equal to or less than 100 &mgr;m; a lower electrode on the substrate, which includes at least a highly elastic electrode and an anti-oxidation electrode on the highly elastic electrode; a dielectric thin film on the first lower electrode; and an upper electrode on the dielectric thin film; wherein the highly elastic electrode is made of a material having a Young's modulus higher than that of the anti-oxidation electrode.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: November 16, 2004
    Assignee: NEC Corporation
    Inventors: Toru Mori, Akinobu Shibuya, Shintaro Yamamichi
  • Patent number: 6818496
    Abstract: This invention relates to the field of semiconductor integrated circuits and, particularly to stand-alone and embedded memory chips fabricated on Silicon-on-Insulator (SOI) substrates and devices. Partially depleted (PD) and fully depleted (FD) devices are utilized on the same chip. The invention is a process flow utilizing fully depleted SOI devices in one area of the chip and partially depleted SOI devices in selected other areas of the chip. The choice of fully depleted or partially depleted is solely determined by the circuit application in that specific area of the chip. The invention is able to be utilized in accordance with DRAM processing, and especially embedded DRAMs with their large proportion of associated logic circuitry.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: November 16, 2004
    Assignee: Micron Technology, Inc,
    Inventors: Charles H. Dennison, John K. Zahurak
  • Patent number: 6815230
    Abstract: A method and a device are disclosed for transmitting a control signal to an option pad of an integrated circuit chip at its package level. The method includes the steps of: electrically isolating one of a plurality of commonly connected power transmitting pins of the integrated circuit package; connecting the electrically isolated power transmitting pin to the option pad to thereby transmit a control signal from outside through the electrically isolated power transmitting pin to the option pad.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: November 9, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Dae Park, Uk-Rae Cho
  • Patent number: 6815269
    Abstract: A thin-film transistor is formed by a polycrystalline silicon film having a thin-film part and a thick-film part, the thin-film part minimally being used as a channel part. The polycrystalline silicon film is formed by laser annealing with an energy density that completely melts the thin-film part but does not completely melt the thick-film part. Because large coarse crystal grains growing from the boundary between the thin-film part and the thick-film part form the channel part, it is possible to use a conventional laser annealing apparatus to easily achieve high carrier mobility and low leakage current and the like.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: November 9, 2004
    Assignee: NEC LCD Technologies, Ltd.
    Inventor: Hiroshi Okumura
  • Patent number: 6815248
    Abstract: A resistive memory device (110) and method of manufacturing thereof comprising a cap layer (140) and hard mask layer (142) disposed over magnetic stacks (114), wherein either the cap layer (140) or hard mask layer (142) comprise WN. A seed layer (136) disposed beneath the magnetic stacks (114) may also be comprised of WN, The use of the material WN improves etch process selectivity during the manufacturing process.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: November 9, 2004
    Assignee: Infineon Technologies AG
    Inventors: Rainer Leuschner, George Stojakovic, Xian J. Ning
  • Patent number: 6812060
    Abstract: The present invention provides bumpless ultrasonic bonding of flexible wiring board pieces. A metal coating 26 is formed on the surface of a contact region 181 of a metal wiring 28 of each of two flexible wiring board pieces 10, 30 and ultrasonic wave is individually applied by an ultrasonic resonator 45 to the contact regions 181 in contact with each other. The metal coatings 26 are bonded to form a multilayer flexible wiring board 50. The bumpless process eliminates any plating step for forming bumps without being influenced by non-uniformity bump height. A thermoplastic resin film 33 may be formed on the surface of one flexible wiring board piece 30 to bond flexible wiring board pieces 10, 30 by the adhesion of the resin film 33.
    Type: Grant
    Filed: October 16, 2000
    Date of Patent: November 2, 2004
    Assignee: Sony Chemicals Corporation
    Inventors: Hideyuki Kurita, Hiroyuki Hishinuma
  • Patent number: 6809042
    Abstract: The present invention provides an oxide superconductor thick film which is formed on a substrate or a board and has a high Jc and Ic and a method for manufacturing the same. Predetermined amounts of materials containing elements of Bi, Pb, Sr, Ca and Cu are weighed, mixed and subjected to steps of calcining, milling, and drying, and thereafter an organic binder and an organic vehicle are added thereto to prepare a (Bi, Pb)2+aSr2Ca2Cu3Oz, superconductive paste, which is applied to the surface of a substrate or a board in a thickness of 260 &mgr;m or more and dried. Thereafter, the paste is first subjected to burning at temperatures of 835° C. to 840° C. for 100 hours, then pressurization, and further burning at temperatures of 835° C. to 840° C. for 100 hours, thereby preparing an oxide superconductor thick film having a film thickness of 130 &mgr;m or more having a high Jc and Ic.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: October 26, 2004
    Assignees: Dowa Mining Co., Ltd., Central Research Institute of Electric Power Industry
    Inventors: Masahiro Kojima, Masakazu Kawahara, Michiharu Ichikawa, Hiroyuki Kado, Masatoyo Shibuya
  • Patent number: 6808992
    Abstract: A method and system for providing a semiconductor device are described. The semiconductor device includes a substrate, a core and a periphery. The core includes a plurality of core gate stacks having a first plurality of edges, while the periphery a plurality of periphery gate stacks having a second plurality of edges. The method and system include providing a plurality of core spacers, a plurality of periphery spacers, a plurality of core sources and a plurality of conductive regions. The core spacers reside at the first plurality of edges and have a thickness. The periphery spacers reside at the second plurality of edges and have a second thickness greater than the first thickness. The core sources reside between the plurality of core gate stacks. The conductive regions are on the plurality of core sources. This method allows different thicknesses of the spacers to be formed in the core and the periphery so that the spacers can be tailored to the different requirements of the core and periphery.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: October 26, 2004
    Assignee: Spansion LLC
    Inventors: Kelwin Ko, Shenqing Fang, Angela T. Hui, Hiroyuki Kinoshita, Wenmei Li, Yu Sun, Hiroyuki Ogawa
  • Patent number: 6806194
    Abstract: A system for processing a workpiece includes a head attached to a head lifter. A workpiece is supported in the head between an upper rotor and a lower rotor. A base has a bowl for containing a liquid. The head is movable by the head lifter from a first position vertically above the bowl, to a second position where the workpiece is at least partially positioned in the bowl. The bowl has a contour section with a sidewall having a radius of curvature which increases adjacent to a drain outlet in the bowl, to help rapid draining of liquid from the bowl. The head has a load position, where the rotors are spaced apart by a first amount, and a process position, where the rotors are engaged and sealed against each other. For rapid evacuation of fluid, the head also has a fast drain position, where the rotors are moved apart sufficiently to create an annular drain gap.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: October 19, 2004
    Assignee: Semitool. Inc.
    Inventors: Paul Z. Wirth, Steven L. Peace, Erik Lund
  • Patent number: 6803309
    Abstract: A method for forming an adhesion/barrier liner with reduced fluorine contamination to improve adhesion and a specific contact resistance of metal interconnects including providing a semiconductor wafer having a process surface including an etched opening extending through a dielectric insulating layer thickness and in closed communication with a conductive underlayer surface; pre-heating the semiconductor wafer in a plasma reactor to a pre-heating temperature of at least about 400° C.; cleaning the etched opening according to a plasma assisted reactive pre-cleaning process (RPC) comprising nitrogen trifluoride (NF3); and, blanket depositing at least a first adhesion/barrier layer over the etched opening substantially free of fluorine containing residue.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: October 12, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Shih-Wei Chou, Chii-Ming Wu
  • Patent number: 6800541
    Abstract: A method of irradiation of plural pulse laser beams onto one position of a non-single crystal semiconductor, wherein the pulse laser beams are not higher in energy density than an energy density threshold value necessary for causing a micro-crystallization of the non-single crystal semiconductor.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: October 5, 2004
    Assignee: NEC Corporation
    Inventor: Hiroshi Okumura
  • Patent number: 6794291
    Abstract: An apparatus for processing a semiconductor wafer or similar article includes a reactor having a processing chamber formed by upper and lower rotors. The wafer is supported between the rotors. The rotors are rotated by a spin motor. A processing fluid is introduced onto the top or bottom surface of the wafer, or onto both surfaces, at a central location. The fluid flows outwardly uniformly and in all directions. A wafer support automatically lifts the wafer, so that it can be removed from the reactor by a robot, when the rotors separate from each other after processing.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: September 21, 2004
    Assignee: Semitool, Inc.
    Inventors: Steven L. Peace, Gary L. Curtis, Raymon F. Thompson, Brian Aegerter, Curt T. Dundas
  • Patent number: 6790758
    Abstract: A process for fabricating a flip-chip substrate with metal bumps thereon. A flip-chip substrate is provided with conductive points thereon and a conductive film is formed over the surface of the flip-chip substrate to cover the conductive points. A photoresist layer is formed over the conductive layer and then patterned to form openings exposing the underlying conductive points. A copper plating is performed to fill the openings as copper bumps. The photoresist layer and the conductive film are removed. Finally, a solder mask layer is formed over the flip-chip substrate and exposing the copper bumps and an anti-oxidation treatment is performed to finish exposing the copper bumps.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: September 14, 2004
    Assignee: Silicon Integrated Systems Corp.
    Inventors: Han-Kun Hsieh, Wei-Feng Lin
  • Patent number: 6784121
    Abstract: A xerogel aging system includes an aging chamber (190) with inlets and outlet and flows a gel catalyst in gas phase over a xerogel precursor film on a semiconductor wafer. Preferred embodiments use an ammonia and water vapor gas mixture catalyst.
    Type: Grant
    Filed: October 23, 1998
    Date of Patent: August 31, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Changming Jin, Richard Scott List, Joseph D. Luttmer
  • Patent number: 6780694
    Abstract: A method of fabricating a semiconductor transistor device comprises the steps as follows. Provide a semiconductor substrate with a gate dielectric layer thereover and a lower gate electrode structure formed over the gate dielectric layer with the lower gate electrode structure having a lower gate top. Form a planarizing layer over the gate dielectric layer leaving the gate top of the lower gate electrode structure exposed. Form an upper gate structure over the lower gate electrode structure to form a T-shaped gate electrode with an exposed lower surface of the upper gate surface and exposed vertical sidewalls of the gate electrode. Remove the planarizing layer. Form source/drain extensions in the substrate protected from the short channel effect. Form sidewall spacers adjacent to the exposed lower surface of the upper gate and the exposed vertical sidewalls of the T-shaped gate electrode. Form source/drain regions in the substrate.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: August 24, 2004
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Omer H. Dokumaci, Jack A. Mandelman, Carl J. Radens
  • Patent number: 6774056
    Abstract: A process system for processing a semiconductor wafer or other similar flat workpiece has a head including a workpiece holder. A motor in the head spins the workpiece. A head lifter lowers the head to move the workpiece into a bath of liquid in a bowl. Sonic energy is introduced into the liquid and travels through the liquid to the workpiece, to assist in processing. The head is lifted to bring the workpiece to a rinse position. The bath liquid is drained. The workpiece is rinsed via radial spray nozzles in the base. The head is lifted to a dry position. A reciprocating swing arm sprays a drying fluid onto the bottom surface of the spinning wafer, to dry the wafer.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: August 10, 2004
    Assignee: Semitool, Inc.
    Inventors: Jon Kuntz, Steven Peace, Ed Derks, Brian Aegerter