Patents Examined by Jai M Lee
  • Patent number: 11700065
    Abstract: A method for automatic power and modulation management in a communication network includes (a) generating a discontinuous management function that is a weighted function of at least spectral efficiency and power consumption of the communication network, (b) determining, from the discontinuous management function, an optimal modulation format, an optimal forward error correction (FEC) rate, and an optimal output power of a transmitter of the communication network, which collectively achieve a maximum value of the management function, and (c) causing the transmitter to operate according to the optimal modulation format, the optimal FEC rate, and the optimal output power.
    Type: Grant
    Filed: October 3, 2022
    Date of Patent: July 11, 2023
    Assignee: Cable Television Laboratories, Inc.
    Inventors: Mu Xu, Zhensheng Jia, Luis Alberto Campos, Chris Stengrim
  • Patent number: 11689284
    Abstract: A coordination node can be configured to control communications between Visible Light Communication, VLC, Access Points, APs, and user equipments, UEs. The coordination node can: identify occurrence of an event relating to operation of a first VLC AP; determine that a second VLC AP and a third VLC AP each have communication coverage areas that are at least partially within a communication coverage area of the first VLC AP; control the second VLC AP to avoid it interfering with communications between the first VLC AP and a UE while it is within a common communication coverage area of the first VLC AP and the second VLC AP; and control the third VLC AP to avoid it interfering with communications between the first VLC AP and the UE while it is within a common communication coverage area of the first VLC AP and the second VLC AP.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: June 27, 2023
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Nicolas Seyvet, Hongxin Liang, Keven Wang
  • Patent number: 11689293
    Abstract: A control device of modulating signal generates high-side signal and low-side signal. The high-side signal takes level in accordance with level of AC component of a monitor signal obtained by photoelectric conversion of modulated light, when the polarity of the AC component is positive, or its magnitude is zero. The high-side signal further takes constant level when the polarity of the AC component is negative. The low-side signal takes constant level when the polarity of the AC component is positive. The low-side signal further takes level in accordance with level of the AC component when the polarity of the AC component is negative, or its magnitude is zero. Then, the control device adjusts level of the modulating signal based on a greatest value of absolute values of levels taken by the high-side signal and a greatest value of absolute values of levels taken by the low-side signal.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: June 27, 2023
    Assignee: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventor: Tomohisa Ishikawa
  • Patent number: 11677476
    Abstract: A radio apparatus and system may include a means for modulating and/or demodulating an optical signal for respective transmission and/or reception of the optical signal using an optical channel connected to a remote radio unit. There may also be provided a means for performing, based on one or more pre-trained computational models, one or more operations on a digital signal corresponding to the optical signal for mitigating one or more non-linearities introduced by the optical modulating and/or demodulating means and the optical channel. The one or more pre-trained computational models may be pre-trained based on feedback data indicative of said one or more non-linearities.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: June 13, 2023
    Assignee: NOKIA SOLUTIONS AND NETWORKS OY
    Inventors: Jinfeng Du, Qi Zhou, Di Che
  • Patent number: 11677468
    Abstract: A packaged integrated white light source configured for illumination and communication or sensing comprises one or more laser diode devices. An output facet configured on the laser diode device outputs a laser beam of first electromagnetic radiation with a first peak wavelength. The first wavelength from the laser diode provides at least a first carrier channel for a data or sensing signal.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: June 13, 2023
    Assignee: KYOCERA SLD Laser, Inc.
    Inventors: Melvin McLaurin, James W. Raring, Paul Rudy, Vlad Novotny
  • Patent number: 11677465
    Abstract: A preFEC BER of a selected optical link is determined. A FEC Detected Degrade (FDD) threshold, FEC Excessive Degrade (FED) threshold, and FEC limit threshold are obtained for the selected optical link. The FDD threshold is less than the FED threshold and the FED threshold is less than the FEC limit. Based on the FDD threshold, FED threshold, the FEC limit, and a determination that a postFEC BER==0, it is determined whether a link down condition of the selected optical link can be asserted or de-asserted.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: June 13, 2023
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Yawei Yin, Jamie Gaudette, Binbin Guan
  • Patent number: 11671176
    Abstract: Provided are a light transmission device and a control method of same which can switch a processing sequence according to a vendor of an optical module to be mounted thereon. The light transmission device, which is provided with ports on which optical modules which transmit an optical signal are mounted, is additionally provided with: a storage means for holding a table in which processing sequences respectively corresponding to pieces of identification information about the optical modules are stored; and a control means for acquiring pieces of identification information about the mounted optical modules, determining, with reference to the table, a processing sequence corresponding to the identification information about the acquired optical module, and executing the determined processing sequence for the optical module.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: June 6, 2023
    Assignee: NEC CORPORATION
    Inventor: Koji Seki
  • Patent number: 11658745
    Abstract: A method of dispersion compensation for an optical link includes establishing communication using a first symbol rate over the optical link, determining a dispersion compensation for the optical link based on the communication at the first symbol rate, and establishing communication using a second symbol rate over the optical link using the determined dispersion compensation, wherein the second symbol rate is higher than the first symbol rate.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: May 23, 2023
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Roberto Magri, Sergio Mosti
  • Patent number: 11658749
    Abstract: A sensor device includes a sensor array including a plurality of photodiodes configured to generate current signals in response to light, an encoder configured to encode the current signals to generate a plurality of analog signals and output the plurality of analog signals sequentially, a signal processing module configured to process the analog signals, received from the encoder, to generate digital signals, and a decoder configured to decode the digital signals, received from the signal processing module, to generate a plurality of data signals corresponding to the current signals.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: May 23, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungjin Jung, Long Yan, Seoungjae Yoo
  • Patent number: 11658742
    Abstract: An optical receiver is provided for a diverged-beam, free space optical communications system. The optical receiver includes a demultiplexer and a detector array. The demultiplexer includes a diffractive optic configured to receive an optical beam propagating in free space. The optical beam includes a plurality of optical carrier signals of respective wavelengths for a plurality of communication channels, and the diffractive optic is configured to spatially separate the optical beam by wavelength into the plurality of optical carrier signals. The detector array includes a plurality of optical detectors configured to convert the plurality of optical carrier signals into a respective plurality of electrical signals for the plurality of communication channels. The plurality of optical detectors includes at least twice as many optical detectors as optical carrier signals in the plurality of optical carrier signals.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: May 23, 2023
    Assignee: 8 Rivers Capital, LLC
    Inventors: William J. Brown, Hannah Clark, David Freed, Miles R. Palmer
  • Patent number: 11658740
    Abstract: Disclosed is a solution for monitoring an operation of an optical fiber. An arrangement for the purpose includes: an indicator device arranged to: receive, from an optical component, a sample of a signal conveyed in the communication channel; determine an indicator value indicative of an amount of light in the sample of the signal; and a computing device arranged to compare the indicator value to a reference value, and set a detection result to express either that the sample of the signal carries a predefined amount of light or the predefined amount of light is absent from the sample. Also disclosed is a method, a computing device, a computer program product and a communication system thereto.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: May 23, 2023
    Assignee: TELIA COMPANY AB
    Inventor: Torbjörn Sillén
  • Patent number: 11646790
    Abstract: An optical system (100) is described including: a reconfigurable optical device (103) with multiplexing wavelength division, comprising a plurality of actuators (A1-AN) and having associated a number of optical channels (M) and a number of degrees of freedom (N) lower than the number of optical channels; an optical stimulus source (106) connected to said reconfigurable optical device (103) to provide an optical stimulation signal (Sin) having a wavelength band including a plurality of wavelengths associated with the optical channels; an optical-electric conversion device (200) configured to receive from said reconfigurable optical device (103) an optical monitoring signal (Sout) corresponding to the optical stimulation signal (Sin) and to provide a group of electrical signals of intensity (SEL1-SELK) each representative of an intensity of the optical monitoring signal (Sout) evaluated at a relative wavelength included in said band.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: May 9, 2023
    Assignee: Politecnico di Milano
    Inventors: Francesco Morichetti, Andrea Ivano Melloni, Douglas Oliveira Morais de Aguiar
  • Patent number: 11646802
    Abstract: Systems and methods are provided for receiving an optical signal from an optical fiber, including: coupling via an optical coupler the optical signal from an optical fiber into first and second waveguides, wherein the optical signal comprises TE and TM polarized optical signals and the optical coupler couples the TE polarized optical signal into the first waveguide and the TM polarized optical signal into the second waveguide; equalizing the TE and TM polarized optical signals from the coupler to equalize optical power levels of the TE and TM polarized optical signals; optically combining the equalized TE and TM polarized optical signals; and transmitting the combined optical signal to a photodetector.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: May 9, 2023
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Di Liang, Zhihong Huang
  • Patent number: 11637633
    Abstract: An optical transmission apparatus (1_1) according to the present invention includes a first transmission unit (11_1) that transmits a first optical transmission signal (21_1), a second transmission unit (11_2) that transmits a second optical transmission signal (21_2), and an output unit that outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) share a set of information, both the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a first path (26_1) and outputs, when the first optical transmission signal (21_1) and the second optical transmission signal (21_2) do not share the set of information, one of the first optical transmission signal (21_1) and the second optical transmission signal (21_2) to a second path (26_2).
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: April 25, 2023
    Assignee: NEC CORPORATION
    Inventor: Yoshiaki Aono
  • Patent number: 11632175
    Abstract: A sourceless co-packaged optical-electrical chip can include a plurality of different optical transceivers, each of which can transmit to an external destination or internal components. Each of the transceivers can be configured for a different modulation format, such as different pulse amplitude, phase shift key, and quadrature amplitude modulation formats. Different light sources provide light for processing by the transceivers, where the light source and transceivers can be configured for different applications (e.g., different distances) and data rates. An optical coupler can combine the light for the different transceivers for input into the sourceless co-packaged optical-electrical chip via a polarization maintaining media (e.g., polarization maintaining few mode fiber and polarization maintaining single mode fiber), where another coupler operates in splitting mode to separate the different channels of light for the different transceivers according to different co-packaged configurations.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: April 18, 2023
    Assignee: Juniper Networks, Inc.
    Inventors: Domenico Di Mola, Steven B. Alleston, Zhen Qu, Ryan Holmes, Jeffery J. Maki, Chul Soo Park, Yang Yue, Jon J. Anderson
  • Patent number: 11632170
    Abstract: A method for managing optical transceivers includes obtaining laser measurements for a laser operating in an optical transceiver in a network device, obtaining a failure profile for the laser, making a first determination that the laser measurements match the failure profile, and based on the first determination, initiating a remediation action for the optical transceiver.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: April 18, 2023
    Assignee: Arista Networks, Inc.
    Inventors: Alexey Kovsh, David Towne
  • Patent number: 11626925
    Abstract: In order to stabilize the characteristics of reception of an optical signal received via a transfer path, this optical receiver is provided with: a local beam output means 1; a light receiving means 2; a photoelectric conversion means 3; a measuring means 4; a control means 5; and a comparing means 6, the comparing means 6, when the control means 5 sweeping the wavelength of the local beam in a predetermined wavelength range with respect to the central wavelength of the optical signal, generating difference data between a spectrum based on a result of the measuring, by the measuring means 4, of the electric signal in accordance with a change in the wavelength of the local beam and a preset reference spectrum.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: April 11, 2023
    Assignee: NEC CORPORATION
    Inventor: Yasushi Hara
  • Patent number: 11621795
    Abstract: Provided is an optical communication system comprising a polarization-diversity optical power supply capable of supplying light over a non-polarization-maintaining optical fiber to a polarization-sensitive modulation device. In an example embodiment, the polarization-diversity optical power supply operates to accommodate random polarization fluctuations within the non-polarization-maintaining optical fiber and enables an equal-power split at a passive polarization splitter preceding the polarization-sensitive modulation device.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: April 4, 2023
    Assignee: Nubis Communications, Inc.
    Inventor: Peter Johannes Winzer
  • Patent number: 11616578
    Abstract: A multi-level optical signal is sampled to generate an eye diagram. The signal can be adjusted when eyes in the eye diagram have different heights. More specifically, a first value is determined, and the height of a first eye is adjusted using the first value. The first value is multiplied by a stored factor to produce a second value, and the height of a second eye is adjusted using the second value, and so on for other eyes. As a result, eye heights are the same. Similarly, optical power levels of the signal can be adjusted when the levels are not equally spaced. As a result, the optical power levels are equally spaced.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: March 28, 2023
    Assignee: MACOM Technology Solutions Holdings, Inc.
    Inventors: Daniel Draper, Merrick Brownlee
  • Patent number: 11611395
    Abstract: First compensation circuitry includes a first digital filter compensating a phase difference between a phase of a symbol of a received signal and a sampling timing, and first filter coefficient calculation circuitry calculating a filter coefficient of the first digital filter as a first filter coefficient. Second filter coefficient calculation circuitry calculates, as a second filter coefficient, a filter coefficient for adaptive equalization that compensates distortion due to temporally changing polarization dispersion, based on an output of the first digital filter. Coefficient combination circuitry combines the first filter coefficient and the second filter coefficient. Second compensation circuitry includes a second digital filter which uses a filter coefficient combined by the coefficient combination circuitry and performs a compensation of the phase difference between the phase of the symbol of the received signal and the sampling timing, and a process of the adaptive equalization at the same time.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: March 21, 2023
    Assignee: NTT ELECTRONICS CORPORATION
    Inventors: Tomohiro Takamuku, Mitsuteru Yoshida, Tsutomu Takeya, Kazuhito Takei, Katsuichi Oyama, Tomoharu Semboku