Patents Examined by Jerome Jackson
  • Patent number: 9312299
    Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion region, a transfer gate, a dielectric charge trapping region, and a first metal contact. The photosensitive element is disposed in a semiconductor layer to receive electromagnetic radiation along a vertical axis. The floating diffusion region is disposed in the semiconductor layer, while the transfer gate is disposed on the semiconductor layer to control a flow of charge produced in the photosensitive element to the floating diffusion region. The dielectric charge trapping device is disposed on the semiconductor layer to receive electromagnetic radiation along the vertical axis and to trap charges in response thereto. The dielectric charge trapping device is further configured to induce charge in the photosensitive element in response to the trapped charges. The first metal contact is coupled to the dielectric charge trapping device to provide a first bias voltage to the dielectric charge trapping device.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: April 12, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Oray Orkun Cellek, Dajiang Yang, Sing-Chung Hu, Philip John Cizdziel, Dyson Tai, Gang Chen, Cunyu Yang, Zhiqiang Lin
  • Patent number: 9312360
    Abstract: A semiconductor device is provided that includes a pedestal of an insulating material present over at least one layer of a semiconductor material, and at least one fin structure in contact with the pedestal of the insulating material. Source and drain region structures are present on opposing sides of the at least one fin structure. At least one of the source and drain region structures includes at least two epitaxial material layers. A first epitaxial material layer is in contact with the at least one layer of semiconductor material. A second epitaxial material layer is in contact with the at least one fin structure. The first epitaxial material layer is separated from the at least one fin structure by the second epitaxial material layer. A gate structure present on the at least one fin structure.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: April 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Ali Khakifirooz, Alexander Reznicek, Soon-Cheon Seo
  • Patent number: 9312386
    Abstract: This application discloses a Fin FET structure and a method for forming the same. In the Fin FET structure, there are lower stress spacers disposed over the lower portion of the fin's opposite sidewalls, asserting one stress type to suppress the carrier mobility; there are also upper stress spacers disposed over the upper portion of the fin's opposite sidewalls, asserting an opposite stress type to increase the carrier mobility. Therefore, the leakage current in the fin FET is reduced and the device performance is improved. In the method, the stress spacers are formed by depositing stress layers and etching back the stress layers, where stress types and magnitudes are controllable, resulting in a simple process.
    Type: Grant
    Filed: June 28, 2015
    Date of Patent: April 12, 2016
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL CORP.
    Inventor: Wayne Bao
  • Patent number: 9312817
    Abstract: A single semiconductor device package that reduces electromagnetic coupling between elements of a semiconductor device embodied within the package is provided. For a dual-path amplifier, such as a Doherty power amplifier, an isolation feature that separates carrier amplifier elements from peaking amplifier elements is included within the semiconductor device package. The isolation feature can take the form of a structure that is constructed of a conductive material coupled to ground and which separates the elements of the amplifier. The isolation feature can be included in a variety of semiconductor packages, including air cavity packages and overmolded packages. Through the use of the isolation feature provided by embodiments of the present invention a significant improvement in signal isolation between amplifier elements is realized, thereby improving performance of the dual-path amplifier.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: April 12, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Peter H. Aaen, David J. Dougherty, Manuel F. Romero, Lakshminarayan Viswanathan
  • Patent number: 9312490
    Abstract: Disclosed are a photothermal conversion film having good photothermal conversion effects and also good visible light penetrability, and a transfer film for an OLED using same. The photothermal conversion film according to the present invention comprises a base film and a photothermal conversion layer formed on the base film, wherein the photothermal conversion layer includes a tungsten oxide-based material and has visible light penetrability of 20% or greater.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: April 12, 2016
    Assignee: LG HAUSYS, LTD.
    Inventors: Tae-Yi Choi, Jang-Soon Kim, Sang-Hwan Kim, Myung-Hyun Jo, Dai-Hyun Kim
  • Patent number: 9305999
    Abstract: A stack pad layers including a first pad oxide layer, a pad nitride layer, and a second pad oxide layer are formed on a semiconductor-on-insulator (SOI) substrate. A deep trench extending below a top surface or a bottom surface of a buried insulator layer of the SOI substrate and enclosing at least one top semiconductor region is formed by lithographic methods and etching. A stress-generating insulator material is deposited in the deep trench and recessed below a top surface of the SOI substrate to form a stress-generating buried insulator plug in the deep trench. A silicon oxide material is deposited in the deep trench, planarized, and recessed. The stack of pad layer is removed to expose substantially coplanar top surfaces of the top semiconductor layer and of silicon oxide plugs. The stress-generating buried insulator plug encloses, and generates a stress to, the at least one top semiconductor region.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Huilong Zhu, Brian J. Greene, Dureseti Chidambarrao, Gregory G. Freeman
  • Patent number: 9305849
    Abstract: A monolithic three dimensional NAND string includes a semiconductor channel, an end part of the semiconductor channel extending substantially perpendicular to a major surface of a substrate, a plurality of control gate electrodes extending substantially parallel to the major surface of the substrate, a charge storage material layer located between the plurality of control gate electrodes and the semiconductor channel, a tunnel dielectric located between the charge storage material layer and the semiconductor channel, and a blocking dielectric containing a plurality of clam-shaped portions each having two horizontal portions connected by a vertical portion. Each of the plurality of control gate electrodes are located at least partially in an opening in the clam-shaped blocking dielectric, and a plurality of discrete cover oxide segments embedded in part of a thickness of the charge storage material layer and located between the blocking dielectric and the charge storage material layer.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: April 5, 2016
    Assignee: SANDISK TECHNOLOGIES INC.
    Inventors: Masanori Tsutsumi, Shigehiro Fujino, Sateesh Koka, Senaka Kanakamedala, Yanli Zhang, Raghuveer S. Makala, Rahul Sharangpani, George Matamis, Wei Zhao
  • Patent number: 9306161
    Abstract: A method of forming a conductive bridging memory cell can include forming an active electrode layer above a barrier layer formed on a lower conductive layer; forming at least one ion conductor layer over an active electrode layer; incorporating conductive ions into the ion conductor layer to create a switch memory layer that changes impedance in response to an electric field; and the active electrode layer is a source of conductive ions for the ion conductor, and the barrier layer substantially prevents a movement of conductive ions therethrough.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 5, 2016
    Assignee: Adesto Technologies Corporation
    Inventors: Yi Ma, Chakravarthy Gopalan, Antonio R. Gallo, Janet Wang
  • Patent number: 9299697
    Abstract: A microelectronic device contains a high voltage component having a high voltage node and a low voltage node. The high voltage node is isolated from the low voltage node by a main dielectric between the high voltage node and low voltage elements at a surface of the substrate of the microelectronic device. A lower-bandgap dielectric layer is disposed between the high voltage node and the main dielectric. The lower-bandgap dielectric layer contains at least one sub-layer with a bandgap energy less than a bandgap energy of the main dielectric. The lower-bandgap dielectric layer extends beyond the high voltage node continuously around the high voltage node. The lower-bandgap dielectric layer has an isolation break surrounding the high voltage node at a distance of at least twice the thickness of the lower-bandgap dielectric layer from the high voltage node.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: March 29, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey Alan West, Thomas D. Bonifield, Byron Lovell Williams
  • Patent number: 9299629
    Abstract: A semiconductor device has a semiconductor substrate provided with a scribe region and an IC region. A first insulating film is disposed on the semiconductor substrate across the scribe region and the IC region. At least one separation groove is provided in the first insulating film in the scribe region. Side walls made of a plug metal film are formed only on respective lateral walls of the separation groove so that the plug metal film on the lateral walls does not extend out of the separation groove and does not exist on an upper surface of the first insulating film. A second insulating film covers at least the side walls formed on the respective lateral walls of the separation groove so that the side walls are disposed under the second insulating film.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 29, 2016
    Assignee: SEIKO INSTRUMENTS INC.
    Inventors: Tomomitsu Risaki, Shoji Nakanishi, Koichi Shimazaki
  • Patent number: 9299734
    Abstract: A method of preparing an active pixel cell on a substrate includes exerting a first stress on the substrate by forming a shallow trench isolation (STI) structure in the substrate. The method further includes testing the stressed substrate using Raman spectroscopy at a plurality of locations on the stress substrate. The method further includes depositing a stress layer having a second stress on the substrate. The stress layer covers devices of the active pixel cell that are on the substrate and the devices include a photodiode next to the STI and a transistor, and the deposition of the stress layer results in the second stress being exerted on the substrate, the second stress countering the first stress.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: March 29, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Shang Hsiao, Nai-Wen Cheng, Chung-Te Lin, Chien-Hsien Tseng, Shou-Gwo Wuu
  • Patent number: 9299719
    Abstract: An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: March 29, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Bruce B. Doris, Balasubramanian S. Haran, Ali Khakifirooz
  • Patent number: 9299698
    Abstract: A semiconductor structure includes first, second, and third transistor elements each having a first screening region concurrently formed therein. A second screening region is formed in the second and third transistor elements such that there is at least one characteristic of the screening region in the second transistor element that is different than the second screening region in the third transistor element. Different characteristics include doping concentration and depth of implant. In addition, a different characteristic may be achieved by concurrently implanting the second screening region in the second and third transistor element followed by implanting an additional dopant into the second screening region of the third transistor element.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: March 29, 2016
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Dalong Zhao, Teymur Bakhishev, Lance Scudder, Paul E. Gregory, Michael Duane, U. C. Sridharan, Pushkar Ranade, Lucian Shifren, Thomas Hoffmann
  • Patent number: 9290378
    Abstract: A method for fabricating a MEMS device includes providing a substrate having a front surface and a back surface, and forming a protruding engagement member on the front surface of the substrate. The protruding engagement member has an inner periphery defining a groove and an outer periphery. The method also includes forming a first trench having a first depth along the outer periphery, forming a patterned mask layer on the protruding engagement member covering the groove and exposing a portion of the first trench. The method further includes etching the exposed portion of the first trench to form a second trench having a second depth, removing the patterned mask layer, bonding the substrate with a MEMS substrate to form the MEMS device, and thinning the back surface to within the second depth. The method prevents dust from being deposited on the MEMS substrate as in the case of cutting.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: March 22, 2016
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Lushan Jiang, Xiaojun Chen, Xuanjie Liu, Liangliang Guo, Junde Ma
  • Patent number: 9293376
    Abstract: A power MOS transistor comprises a drain contact plug formed over a first side of a substrate, a source contact plug formed over a second side of the substrate and a trench formed between the first drain/source region and the second drain/source region. The trench comprises a first gate electrode, a second gate electrode, wherein top surfaces of the first gate electrode and the second gate electrode are aligned with a bottom surface of drain region. The trench further comprises a field plate formed between the first gate electrode and the second gate electrode, wherein the field plate is electrically coupled to the source region.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chih Su, Hsueh-Liang Chou, Chun-Wai Ng, Ruey-Hsin Liu
  • Patent number: 9293377
    Abstract: There are provided a semiconductor device structure and a method for manufacturing the same. The method comprises: forming at least one continuous gate line on a semiconductor substrate; forming a gate spacer surrounding the gate line; forming source/drain regions in the semiconductor substrate on both sides of the gate line; forming a conductive spacer surrounding the gate spacer; and performing inter-device electrical isolation at a predetermined region, wherein isolated portions of the gate line form gates of respective unit devices, and isolated portions of the conductive spacer form contacts of respective unit devices. Embodiments of the present disclosure are applicable to manufacture of contacts in integrated circuits.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 22, 2016
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Haizhou Yin
  • Patent number: 9293460
    Abstract: An integrated circuit includes an NMOS SCR in which a p-type body well of the NMOS transistor provides a base layer for a vertical NPN layer stack. The base layer is formed by implanting p-type dopants using an implant mask which has a cutout mask element over the base area, so as to block the p-type dopants from the base area. The base layer is implanted concurrently with p-type body wells under NMOS transistors in logic components in the integrated circuit. Subsequent anneals cause the p-type dopants to diffuse into the base area, forming a base with a lower doping density that adjacent regions of the body well of the NMOS transistor in the NMOS SCR. The NMOS SCR may have a symmetric transistor, a drain extended transistor, or may be a bidirectional NMOS SCR with a symmetric transistor integrated with a drain extended transistor.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: March 22, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Henry Litzmann Edwards, Akram A. Salman
  • Patent number: 9293366
    Abstract: A device includes a substrate, and a plurality of dielectric layers over the substrate. A plurality of metallization layers is formed in the plurality of dielectric layers, wherein at least one of the plurality of metallization layers comprises a metal pad. A through-substrate via (TSV) extends from the top level of the plurality of the dielectric layers to a bottom surface of the substrate. A deep conductive via extends from the top level of the plurality of dielectric layers to land on the metal pad. A metal line is formed over the top level of the plurality of dielectric layers and interconnecting the TSV and the deep conductive via.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 22, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Ku-Feng Yang
  • Patent number: 9293633
    Abstract: A removable cover system for protecting solar cells from exposure to moisture during fabrication processes. The cover system includes a cover having a configuration that complements the configuration of a solar cell substrate to be processed in an apparatus where moisture is present. A resiliently deformable seal member attached to the cover is positionable with the cover to engage and seal the top surface of the substrate. In one embodiment, the cover is dimensioned and arranged so that the seal member engages the peripheral angled edges and corners of the substrate for preventing the ingress of moisture beneath the cover. An apparatus for fabricating a solar cell using the cover and associated method are also disclosed.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: March 22, 2016
    Assignee: TSMC Solar Ltd.
    Inventors: Chih-Wei Huang, Keng-Hsin Chi, Chien-Nan Lin, Hua-Tso Wei
  • Patent number: 9287188
    Abstract: A wafer seal ring may be formed on a first and/or a second wafer. One or both of the first and/or second wafers may have one or more dies formed thereon. The wafer seal ring may be formed to surround the dies of a corresponding wafer. One or more die seal rings may be formed around the one or more dies. The wafer seal ring may be formed to a height that may be approximately equal to a height of one or more die seal rings formed on the first and/or second wafer. The wafer seal ring may be formed to provide for eutectic or fusion bonding processes. The first and second wafers may be bonded together to form a seal ring structure between the first and second wafers. The seal ring structure may provide a hermetic seal between the first and second wafers.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: March 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Ying Chen, Yi Hsun Chiu, Ching-Hou Su, Chyi-Tsong Ni