Patents Examined by Jerry Rahll
  • Patent number: 11703648
    Abstract: Various embodiments disclosed herein are directed to a Network system including: a connector comprising a housing comprising a groove running widthwise on a surface of the housing; and a push-pull tab comprising a complementary groove, wherein the push-pull tab is detachably connected to the housing; and a receiver device comprising one or more ports for receiving the connector, the one or more ports having an interchangeable anchor device including a first portion and a second portion; wherein the groove is configured to receive the first portion of the interchangeable anchor device when the connector is inserted into the receiving element, and wherein the complimentary groove is configured to receive the second portion of the interchangeable anchor device when the connector is inserted into the receiving element, the push-pull tab being configured to disengage the second portion of the interchangeable anchor device from the complementary groove when the push-pull tab is moved in a direction away from the co
    Type: Grant
    Filed: January 23, 2022
    Date of Patent: July 18, 2023
    Assignee: Senko Advanced Components, Inc.
    Inventors: Jeffrey Gniadek, Kimman Wong, Kazuyoshi Takano, Siu Kei Ma
  • Patent number: 11703647
    Abstract: An optical fiber securing structure includes: an optical fiber including a coating, and a coating-removed section in which a partial section of the coating is removed from the optical fiber; a reinforcement member including main surfaces and a groove formed from one of the main surfaces toward an inside of the reinforcement member, where the groove has a pair of side walls and a bottom wall; and a resin member that secures the coating-removed section to the pair of side walls and the bottom wall. A bottom part of the groove that includes the bottom wall has a widthwise cross-sectional shape where the bottom wall constitutes a trapezoidal shape such that a distance between the pair of side walls becomes greater in a direction away from the bottom wall.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: July 18, 2023
    Assignee: Fujikura Ltd.
    Inventors: Ryokichi Matsumoto, Yoshitaka Nakamura, Naoyuki Sugiyama, Hiroto Nakazato, Yasushi Oikawa, Akari Takahashi
  • Patent number: 11703644
    Abstract: A manufacturing method for manufacturing a multi-fiber connector, including: shaping a part of each of a plurality of optical fibers such that a part of an outer peripheral surface of a glass fiber including one end portion becomes a flat surface; arranging each of the plurality of optical fibers in a positioning component such that the entire flat surface protrudes from the positioning component; rotationally aligning each of the plurality of optical fibers such that the flat surface comes into contact with a reference surface of a jig; fixing each of the plurality of optical fibers to the positioning component; and cutting and removing a part of the glass fiber which protrudes from the positioning component and includes the flat surface and grinding a cut surface of each of the plurality of optical fibers which is exposed from the positioning component.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: July 18, 2023
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hajime Arao, Tetsu Morishima
  • Patent number: 11699868
    Abstract: A pluggable free-space photoelectric hybrid connector including a female connector and a male connector is provided. The female connector includes a first insulating substrate, metal elastic clips, a first circuit board, and a first optical communication module. An insertion cavity is formed at the front end of the first insulating substrate, and a first fiber mounting hole and first electrode mounting holes are formed at the rear end thereof. The metal elastic clips are mounted in the first electrode mounting holes respectively, where contact portions of at least one set of metal elastic clips are exposed from the top of the insertion cavity, and contact portions of at least another set of metal elastic clips are exposed from the bottom of the insertion cavity. The first circuit board is mounted at the rear end of the first insulating substrate and is electrically connected to the metal elastic clips.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: July 11, 2023
    Assignee: HANGZHOU MO-LINK TECHNOLOGY CO. LTD
    Inventors: Hao Wang, Qi Chen, Cheng Zhi Mo, Hai Tang Qin
  • Patent number: 11698499
    Abstract: An optical fiber drop cable. The optical fiber drop cable includes at least one optical fiber and at least one inner tensile element wound around the at least one optical fiber having a laylength of at least 200 mm. The optical fiber drop cable also includes an interior jacket disposed around the at least one inner tensile element and an exterior jacket having an inner surface and an outer surface. The optical fiber drop cable further includes at least one outer tensile element disposed between the interior jacket and the outer surface of the exterior jacket. Each of the at least one outer tensile element has a laylength of at least 1 m. The exterior jacket includes at least one polyolefin, at least one thermoplastic elastomer, and at least one high aspect ratio inorganic filler. The exterior jacket has an averaged coefficient of thermal expansion of no more than 120 (10?6) m/mK.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: July 11, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Xiaole Cheng, Jason Clay Lail
  • Patent number: 11698487
    Abstract: A compact micro electrical mechanical actuated ring-resonator includes a bus waveguide disposed on a platform; a ring resonator disposed on the platform, including at least a first optical coupler, wherein the ring resonator is optically coupled with the bus waveguide; and a selective waveguide disposed on a piezoelectric cantilever mounted in a trench defined in the platform, wherein the selective waveguide includes a second optical coupler and is controllable to selectively adjust a coupling ratio between the first optical coupler with the second optical coupler by physically changing a distance between the first optical coupler and the second optical coupler.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: July 11, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Sujit Handanhal Ramachandra, Kirk L. Stechschulte
  • Patent number: 11693181
    Abstract: The disclosure relates to a high-density optical waveguide structure, a printed circuit board and a preparation method thereof. The high-density optical waveguide structure comprises an undercladding layer, a core layer and an upper cladding layer in sequence; wherein, the lower cladding layer is arranged at intervals. The trench is filled with an optical waveguide material to form a core layer. The waveguide structure integrates an optical waveguide into a PCB to realize photoelectric interconnection. The waveguide structure can better achieve higher parallel interconnection density, maintain good signal integrity, reduce device and device size, and at the same time, consume less power. The structure is configured to easily dissipate heat, enabling a simpler physical architecture and design, maximizing the wiring space of printed circuit boards, facilitating the fabrication of ultra-fine wire boards; and improving the wiring density and reliability of existing manufacturing methods.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: July 4, 2023
    Assignee: TTM Technologies, Inc.
    Inventors: Xinhong Shi, Haitao Fu, Jun Zhang, Huamei Zhou, Longxiu Zhu, Marika Immonen
  • Patent number: 11694935
    Abstract: A semiconductor wafer includes a semiconductor chip that includes a photonic device. The semiconductor chip includes an optical fiber attachment region in which an optical fiber alignment structure is to be fabricated. The optical fiber alignment structure is not yet fabricated in the optical fiber attachment region. The semiconductor chip includes an in-plane fiber-to-chip optical coupler positioned at an edge of the optical fiber attachment region. The in-plane fiber-to-chip optical coupler is optically connected to the photonic device. A sacrificial optical structure is optically coupled to the in-plane fiber-to-chip optical coupler. The sacrificial optical structure includes an out-of-plane optical coupler configured to receive input light from a light source external to the semiconductor chip. At least a portion of the sacrificial optical structure extends through the optical fiber attachment region.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: July 4, 2023
    Assignee: Ayar Labs, Inc.
    Inventors: Roy Edward Meade, Anatol Khilo, Forrest Sedgwick, Alexandra Wright
  • Patent number: 11693188
    Abstract: A large-scale single-photonics-based optical switching system that occupies an area larger than the maximum area of a standard step-and-repeat lithography reticle is disclosed. The system includes a plurality of identical switch blocks, each of is formed in a different reticle field that no larger than the maximum reticle size. Bus waveguides of laterally adjacent switch blocks are stitched together at lateral interfaces that include a second arrangement of waveguide ports that is common to all lateral interfaces. Bus waveguides of vertically adjacent switch blocks are stitched together at vertical interfaces that include a first arrangement of waveguide ports that is common to all vertical interfaces. In some embodiments, the lateral and vertical interfaces include waveguide ports having waveguide coupling regions that are configured to mitigate optical loss due to stitching error.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: July 4, 2023
    Assignee: The Regents of the University of California
    Inventors: Tae Joon Seok, Ming Chiang A Wu
  • Patent number: 11686908
    Abstract: A package includes a photonic layer on a substrate, the photonic layer including a silicon waveguide coupled to a grating coupler; an interconnect structure over the photonic layer; an electronic die and a first dielectric layer over the interconnect structure, where the electronic die is connected to the interconnect structure; a first substrate bonded to the electronic die and the first dielectric layer; a socket attached to a top surface of the first substrate; and a fiber holder coupled to the first substrate through the socket, where the fiber holder includes a prism that re-orients an optical path of an optical signal.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: June 27, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Ming Weng, Chen-Hua Yu, Chung-Shi Liu, Hao-Yi Tsai, Cheng-Chieh Hsieh, Hung-Yi Kuo, Tsung-Yuan Yu, Hua-Kuei Lin, Che-Hsiang Hsu
  • Patent number: 11681109
    Abstract: One or more cables are axially, laterally, and/or rotationally secured to an anchor member. A plug connector can be assembled to or around the anchor member. The anchor member also can be used to handle the cable prior to assembling the plug connector. A connectorization system for assembling plug connectors includes multiple types/sizes of cables; optionally types/sizes of plug bodies; and the anchor member sized and shaped to connect a selected one of any of the cables with any of the plug bodies of the connectorization system.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: June 20, 2023
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventor: Michael James Ott
  • Patent number: 11675147
    Abstract: An optical transceiver includes a groove-shaped accommodating portion that extends in a longitudinal direction, the housing being configured to be inserted and removed from a cage of an external device. The optical transceiver includes a movable member attached to the housing and a leaf spring member accommodated in the accommodating portion. The spring member includes a first pressing portion pressing a protrusion toward a first surface of the accommodating portion. The spring member includes and a second pressing portion pressing, in the longitudinal direction, a second surface of the accommodating portion. An end of the spring member toward the first pressing portion is configured to curve away from the first surface of the accommodating portion in the longitudinal direction as a distance from first pressing portion increases.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: June 13, 2023
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Kuniyuki Ishii
  • Patent number: 11675146
    Abstract: An optical assembly includes a base plate, a light transmitting component arranged on the base plate, a lens component arranged on the base plate along an optical path of light transmitted from the light transmitting component, a supporting member, and an auxiliary member. The supporting member includes a bottom surface that bonds to the base plate and a side surface that connects to the auxiliary member. The auxiliary member includes a side surface on which the lens component is disposed and a bonding surface that bonds to the side surface of the supporting member. The lens component is configured to focus and couple, or collimate, an optical signal transmitted from the light transmitting component. A bottom surface of the auxiliary member and a bottom surface of the lens component are both higher than the top surface of the base plate.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: June 13, 2023
    Assignee: InnoLight Technology (Suzhou) Ltd.
    Inventor: Long Chen
  • Patent number: 11668942
    Abstract: Disclosed herein are techniques for aligning a collimator assembly with an array of LEDs and apparatuses formed using the disclosed techniques. According to certain embodiments, a display projector includes a display device and a collimator assembly. The display device includes a backplane including a first plurality of features. The display device further includes a plurality of dies. Each die of the plurality of dies comprises a plurality of light emitting diodes and is bonded to the backplane. The collimator assembly includes a plurality of lenses and a second plurality of features. The collimator assembly is attached to the display device through coupling the first plurality of features with the second plurality of features such that the plurality of dies are aligned with the plurality of lenses.
    Type: Grant
    Filed: March 3, 2022
    Date of Patent: June 6, 2023
    Assignee: META PLATFORMS TECHNOLOGIES, LLC
    Inventor: Rajendra D. Pendse
  • Patent number: 11668874
    Abstract: Disclosed herein is an optical filter configured for wavelength division and multiplexing capable of transmitting and receiving signals. The optical filter includes an optical waveguide configured to receive at an input multiple signals with different wavelengths. The optical filter includes a plurality of channels coupled at different locations along a length of the optical waveguide. Each of the plurality of channels is configured to transmit a respective one of the multiple signals. A number of ring filter stages in a first channel of the plurality of channels that is closer to the input of the optical waveguide is greater than a second channel in the plurality of channels further away from the input of the optical waveguide.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: June 6, 2023
    Assignee: XILINX, INC.
    Inventors: Zhaoyin Daniel Wu, Chuan Xie, Mayank Raj, Parag Upadhyaya
  • Patent number: 11662534
    Abstract: Embodiments of the disclosure relate to a method of preparing a bundled cable. In the method, a plurality of subunits is wound around a central member in one or more layers of subunits to form the bundled cable. For a section of the central member, each layer of subunits has a pitch over which a subunit of the layer of subunits makes one revolution around the section of the central member and a length of the subunit required to make the one revolution. The subunits are configured to have a nominal helical length equal to the ratio of a nominal length to a nominal pitch. Further, in the method, a measurement of the bundled cable is monitored, and a winding rate of the plurality of subunits is adjusted based on the measurement in order to account for deviations from the nominal helical length.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: May 30, 2023
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Mark Edward Conner, Eric Scott Quinby, James Arthur Register, III, Hieu Vinh Tran
  • Patent number: 11662518
    Abstract: A hollow core photonic crystal fiber (PCF) including an outer cladding region and seven hollow tubes surrounded by the outer cladding region. Each of the hollow tubes is fused to the outer cladding to form a ring defining an inner cladding region and a hollow core region surrounded by the inner cladding region. The hollow tubes are not touching each other, but are arranged with distance to adjacent hollow tubes. The hollow tubes each have an average outer diameter d2 and an average inner diameter d1, wherein d1/d2 is equal to or larger than about 0.8, such as equal to or larger than about 0.85, such as equal to or larger than about 0.9. Also, a laser system.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: May 30, 2023
    Assignee: NKT PHOTONICS A/S
    Inventors: Jens Kristian Lyngsøe, Christian Jakobsen, Mattia Michieletto
  • Patent number: 11656405
    Abstract: Provided is an optical wavelength multi/demultiplexing circuit with a high rectangular transmission loss spectrum that is able to secure loss flatness of a transmission band, maintain/reduce a guard bandwidth of wavelength channel spacing, and broaden a transmission bandwidth. The circuit uses a multimode waveguide for a connecting part between a field modulation device and an AWG. The field modulation device is constituted by a common input waveguide, an optical branching unit, optical delay lines, a multiplex interference unit, and a mode converter/multiplexer.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: May 23, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Manabu Oguma, Osamu Moriwaki, Kenya Suzuki
  • Patent number: 11650381
    Abstract: PIC die packages may include a PIC die including: a body having a plurality of layers including a plurality of interconnect layers. A first optical fiber is positioned in a groove and a second optical fiber positioned in another groove in the edge of the body. The first optical fiber is aligned with an optical component in a first layer of the body at a first vertical depth, and the second optical fiber is aligned with another optical component in a second, different layer of the body at a second different vertical depth. A cover is over at least a portion of the body. The cover includes a member having a face defining a first seat therein having a first height to receive a portion of the first optical fiber, and defining a second seat therein having a second, different height to receive a portion of the second optical fiber.
    Type: Grant
    Filed: February 12, 2022
    Date of Patent: May 16, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Nicholas A. Polomoff, Yusheng Bian, Thomas Houghton
  • Patent number: 11646803
    Abstract: An expanded Bell state generator can generate a Bell state on four output modes of a set of m output modes, where m is greater than four. Some expanded Bell state generators can receive inputs on any four of a set of 2m input modes. Subsets of the m output modes can be multiplexed to reduce the number of modes to four. According to some embodiments, a set of 2×2 muxes can be used to rearrange the output modes prior to reducing the number of modes.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: May 9, 2023
    Assignee: Psiquantum, Corp.
    Inventors: Terence Rudolph, Hugo Cable