Patents Examined by John Bedtelyon
  • Patent number: 11709327
    Abstract: A semiconductor package includes a first mold layer at least partially encasing at least one photonic integrated circuit. A redistribution layer structure is fabricated on the first mold layer, the redistribution layer structure including dielectric material and conductive structures. A second mold layer at least partially encasing at least one semiconductor chip is fabricated on the redistribution layer structure. The redistribution layer structure provides electrical pathways between the at least one semiconductor chip and the at least one photonic integrated circuit. One or more voids are defined in the second mold layer in an area above an optical interface of the at least one photonic integrated circuit such that light is transmittable through dielectric material above the optical interface.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: July 25, 2023
    Assignee: ADVANCED MICRO DEVICES, INC.
    Inventors: Brett P. Wilkerson, Raja Swaminathan, Kong Toon Ng, Rahul Agarwal
  • Patent number: 11698489
    Abstract: A method for fabricating a photonic package device is provided. The method includes patterning a semiconductor layer of a semiconductor-on-insulator (SOI) substrate into a waveguide structure and at least one first semiconductor pillar; forming a metal-dielectric stack over the waveguide structure and the first semiconductor pillar; etching an opening in the metal-dielectric stack to expose the first semiconductor pillar; etching an insulator layer of the SOI substrate to form at least one insulator cap below the first semiconductor pillar; and etching a base semiconductor substrate of the SOI substrate to form at least one second semiconductor pillar below the insulator cap.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: July 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ying-Hua Chen, Hau-Yan Lu, Wen-Chen Lu
  • Patent number: 11698494
    Abstract: A miniaturized integrated frequency locked optical whispering evanescent resonator comprises: an optical source; an optical path having a first end and a second end, the optical path coupled to the optical source at the first end; an optical resonator disposed along a side of the optical path between the first and second ends, the optical resonator coupled to the optical path through an evanescent field to excite an optical whispering-gallery mode; an optical receiver coupled to the second end of the optical path; and a digital data processor configured to communicate with the optical receiver and the optical source, wherein the digital data processor comprises a frequency locking system and a data acquisition system, wherein the frequency locking system tunes the frequency of the optical source to the optical whispering-gallery mode of the optical resonator, and wherein the resonator weighs less than 15 kg and is containable within a volume less than 30 liters.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: July 11, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Judith Su, Shuang Hao, Gwangho Choi
  • Patent number: 11698482
    Abstract: In various embodiments, the beam parameter product and/or beam shape of a laser beam is adjusted by directing the laser beam across a path along the input end of a cellular-core optical fiber. The beam emitted at the output end of the cellular-core optical fiber may be utilized to process a workpiece.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: July 11, 2023
    Assignee: Panasonic Connect North America, Division of Panasonic Corporation of North America
    Inventors: Francisco Villarreal-Saucedo, Wang-Long Zhou, Parviz Tayebati
  • Patent number: 11693200
    Abstract: Embodiments herein describe using a double wafer bonding process to form a photonic device. In one embodiment, during the bonding process, an optical element (e.g., a high precision optical element) is optically coupled to an optical device in an active surface layer. In one example, the optical element comprises a nitride layer which can be patterned to form a nitride waveguide, passive optical multiplexer or demultiplexer, or an optical coupler.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: July 4, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Vipulkumar K. Patel, Ravi S. Tummidi, Mark A. Webster
  • Patent number: 11693178
    Abstract: A photonic integrated circuit (PIC) includes a semiconductor substrate, one or more passive components, and one or more active components. The one or more passive components are fabricated on the semiconductor substrate, wherein the passive components are fabricated in a III-V type semiconductor layer. The one or more active components are fabricated on top of the one or more passive components, wherein optical signals are communicated between the one or more active components via the one or more passive components.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: July 4, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: John E. Bowers, Arthur Gossard, Daehwan Jung, Justin Norman, Chen Shang, Yating Wan
  • Patent number: 11686992
    Abstract: A capacitive electro-optical modulator includes a silicon layer having a cavity having sidewalls and a floor. A germanium or silicon-germanium strip overlies the silicon layer within the cavity. A silicon strip overlies the germanium or silicon-germanium strip within the cavity. The silicon strip is wider than the germanium or silicon-germanium strip. An insulator fills the cavity laterally adjacent the germanium or silicon-germanium strip and the silicon strip and extending between the sidewalls of the cavity. An upper insulating layer overlies the silicon strip and the insulator. A layer of III-V material overlies the upper insulating layer. The layer of III-V material formed as a third strip is arranged facing the silicon strip and separated therefrom by a portion of the upper insulating layer.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: June 27, 2023
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Frédéric Boeuf, Cyrille Barrera
  • Patent number: 11675129
    Abstract: A semiconductor device is provided. The semiconductor device includes a waveguide over a substrate. The semiconductor device includes a first dielectric structure over the substrate, wherein a portion of the waveguide is in the first dielectric structure. The semiconductor device includes a second dielectric structure under the waveguide, wherein a first sidewall of the second dielectric structure is adjacent a first sidewall of the substrate.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: June 13, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yi-Chen Chen, Lee-Chuan Tseng, Shih-Wei Lin
  • Patent number: 11656416
    Abstract: The present disclosure provides an optical waveguide connection assembly and an optical module including the optical waveguide connection assembly. The optical waveguide connection assembly includes a holder, an optical fiber, a connection member and an optical coefficient adjusting member. The holder has a first part and a second part. The first part is positioned a side of the optical element, the second part is positioned above the optical element. The optical fiber is fixed to the first par. The connection member is provided between the second part and the optical element. The optical coefficient adjusting member is provided between the optical fiber and the optical element, so that a beam is capable of being transferred between the optical fiber and the optical element via the optical coefficient adjusting member. The optical waveguide connection assembly is fixed to the optical element via the connection member and the optical coefficient adjusting member.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: May 23, 2023
    Assignee: Molex, LLC
    Inventors: Sung-Ping Huang, Zuon-Min Chuang
  • Patent number: 11656487
    Abstract: An optical waveguide element includes a substrate and an optical waveguide that is disposed on the substrate. The optical waveguide has an effective refractive index change portion in which an effective refractive index of the optical waveguide related to a fundamental mode A parallel to a plane of polarization of a light wave propagated through the optical waveguide changes according to propagation of the light wave. In the effective refractive index change portion, a cross-sectional shape of the optical waveguide which is perpendicular to a propagation direction of the light wave is set such that the effective refractive index of the optical waveguide related to the fundamental mode A is higher than an effective refractive index of the optical waveguide related to another fundamental mode B perpendicular to the fundamental mode A.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: May 23, 2023
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Yu Kataoka, Shingo Takano, Norikazu Miyazaki
  • Patent number: 11650440
    Abstract: A photovoltaic modulator utilizes free carriers generated by absorption of optical radiation passing through the modulator to achieve ultra-low energy modulation of the radiation. The photovoltaic modulator can also function as an electro-optic transducer for low-power, low-EMI, high-density sensing applications.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: May 16, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Marc De Cea Falco, Amir H. Atabaki, Rajeev J. Ram
  • Patent number: 11644618
    Abstract: An integrated photonics device that emits light out towards a measured sample value is disclosed. The device can include a discrete optical unit that attaches to a supporting layer. The discrete optical unit can include mirror(s), optics, detector array(s), and traces. The supporting layer can include one or more cavities having facet walls. Light emitter(s) can emit light that propagate through waveguide(s). The emitted light can exit the waveguide(s) (via termination point(s)), enter the one or more cavities at the facet walls, and be received by receiving facets of the discrete optical unit. The mirror(s) of the discrete optical unit can redirect the received light towards collimating optics, which can direct the light out of the device through the system interface. The discrete optical unit can be formed separately from the supporting layer or bonded to the supporting layer after the mirror, optics, detector arrays, and traces are formed.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: May 9, 2023
    Inventors: Michael J. Bishop, Vijay M. Iyer, Lexie Nicole Schachne, Jason Pelc
  • Patent number: 11640065
    Abstract: An optical device, having at least first and second light-transmitting substrates, each having at least two external surfaces and an input aperture and an output aperture. The external surface of the first light-transmitting substrate is optically cemented to an external surface of the second light-transmitting substrate by an optical adhesive defining an interface plane. The refractive index of the optical adhesive is substantially lower than the refractive index of the first substrate. Part of the light waves entering the device through the input aperture and exiting the device through the output aperture impinge on the interface plane of the first substrate having incidence angles smaller than the critical angle. Another part of the light waves impinging on the interface plane have incidence angles higher than the critical angle. The interface plane is substantially transparent for the light waves impinging on interface plane having incidence angles smaller than the critical angle.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: May 2, 2023
    Assignee: OORYM OPTICS LTD.
    Inventors: Yaakov Amitai, Nadav Amitai
  • Patent number: 11630369
    Abstract: Embodiments are disclosed for generating an optical Pulse Amplitude Modulation 4-level (PAM-4) signal from bandwidth-limited duobinary electrical signals in a Mach-Zehnder modulator. An example system includes an MZM structure that comprises a first waveguide interferometer arm structure associated with a first semiconductor device and a second waveguide interferometer arm structure associated with a second semiconductor device. A polybinary electrical signal is applied to or between the first semiconductor device and the second semiconductor device to convert an input optical signal provided to the MZM structure into an optical PAM-4 signal.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: April 18, 2023
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Paraskevas Bakopoulos, Nikolaos (Nikos) Argyris, Boaz Atias, Elad Mentovich
  • Patent number: 11624965
    Abstract: An optical waveguide device includes an intermediate layer, a thin-film LN layer including X-cut lithium niobate, and a buffer layer stacked on a substrate; an optical waveguide formed in the thin-film LN layer; and an electrode for driving. The intermediate layer is formed by an upper first intermediate layer and a lower second intermediate layer, the second intermediate layer having a permittivity that is smaller than a permittivity of the first intermediate layer.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: April 11, 2023
    Assignee: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventors: Shuntaro Makino, Yoshinobu Kubota, Yasuhiro Ohmori, Masaharu Doi, Teruo Kurahashi
  • Patent number: 11619856
    Abstract: A device includes two or more waveguide portions that are adjacent to each other, and each of the two or more waveguide portions includes a first n-doped semiconductor structure and a p-doped semiconductor structure in contact with the first n-doped semiconductor structure at a bottom surface and two lateral walls on opposite ends of the first n-doped semiconductor structure. The device includes an undoped semiconductor structure in contact with each of the p-doped semiconductor structures and free of contact with each of the first n-doped semiconductor structures, and the undoped semiconductor structure includes an optical waveguide core embedded within the undoped semiconductor structure. The device includes a second n-doped semiconductor structure in contact with the undoped semiconductor structure and free of contact with each of the first n-doped semiconductor structures and the p-doped semiconductor structures.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: April 4, 2023
    Assignee: Ciena Corporation
    Inventor: Ian Nicholas Woods
  • Patent number: 11619781
    Abstract: A microLED may be used to generate light for intra-chip or inter-chip communications. The microLED, or an active layer of the microLED, may be embedded in a waveguide. The waveguide may include a lens.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: April 4, 2023
    Assignee: AVICENATECH CORP.
    Inventors: Robert Kalman, Bardia Pezeshki, Alexander Tselikov, Cameron Danesh
  • Patent number: 11619795
    Abstract: The present disclosure relates to cable fixation devices for securing cables such as fiber optic cables to structures such as enclosures, panels, trays, frames or the like. The cable fixation devices can be configured to allow cables to be attached thereto while the fixation devices are disconnected from the structures. The fixation devices can be mounted in densely stacked configurations.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: April 4, 2023
    Assignee: Commscope Connectivity Belgium BVBA
    Inventors: Barry Wayne Allen, David Jan Irma Van Baelen, Eric Schurmans
  • Patent number: 11614590
    Abstract: A microlens array according to an embodiment of the present disclosure includes lens layers with a first side thereof having aspheric-surface shapes. The microlens array is configured such that an optical communication module may be miniaturized and integrated as a working distance (WD) is minimized to 1.30±0.05 mm, and collimating performance is excellent as a curvature radius (R1) of each lens layer is 1.1 to 1.5.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: March 28, 2023
    Assignee: MPNICS CO., LTD.
    Inventors: Sang Do Kang, Seung Keun Oh
  • Patent number: 11609388
    Abstract: A multi-fiber, fiber optic connector may include a reversible keying arrangement for determining the orientation for plugging the connector into an adapter to thereby allow for a change in polarity of the connection to be made on site. The connector housing may be configured to engage with a removable key that may be engaged with the housing in at least two different locations to provide the plug-in orientation, or the housing may have slidably displaceable keys movable between multiple positions on the housing.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: March 21, 2023
    Assignee: Senko Advanced Components, Inc.
    Inventors: Jeffrey Gniadek, Kim Man Wong, Yim Wong, Jimmy Chang