Patents Examined by Jonathan Crepeau
  • Patent number: 11804624
    Abstract: A battery module having a plurality of battery cells (2), in particular lithium-ion battery cells (20), which are each electrically conductively interconnected with one another in series and/or in parallel, and a switching device (3), which has a first terminal (31) and a second terminal (32), wherein a first connecting element (41) of electrically conductive design electrically conductively connects the first terminal (31) to a voltage tap (5) of a battery cell (2, 21) arranged at an end and a second connecting element (42) of electrically conductive design electrically conductively connects the second terminal (32) to a voltage tap (6) of the battery module (1), wherein the first connecting element (41) and/or the second connecting element (42) are received in a thermally conductive manner in a receptacle (7, 71, 72) of the housing (10) of the battery module (1).
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: October 31, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Frank Gottwald, Ralph Glemser
  • Patent number: 11786970
    Abstract: Methods for fabricating an interconnect for a fuel cell stack that include providing a protective layer over at least one surface of an interconnect formed by powder pressing pre-alloyed particles containing two or more metal elements and annealing the interconnect and the protective layer at elevated temperature to bond the protective layer to the at least one surface of the interconnect.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: October 17, 2023
    Assignee: BLOOM ENERGY CORPORATION
    Inventor: Tad Armstrong
  • Patent number: 11791453
    Abstract: Energy storage devices are disclosed. In some embodiments, the energy storage devices comprise a positive electrode comprising a carbon-based material comprising porous carbon sheet(s). Fabrication processes for manufacturing the energy storage devices are disclosed.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: October 17, 2023
    Assignee: The Regents of the University of California
    Inventors: Maher F. El-Kady, Richard B. Kaner, Matthew Kowal
  • Patent number: 11791474
    Abstract: The present disclosure relates to an electrolyte membrane for fuel cells including a hydrogen peroxide generating catalyst and a hydrogen peroxide decomposing catalyst, the electrolyte membrane exhibiting highly improved durability, and a method of manufacturing the same. Specifically, the electrolyte membrane includes a support and a catalyst particle including a catalyst metal supported by the support, the catalyst metal including one selected from the group consisting of a first metal having catalyst activity to generate hydrogen peroxide, a second metal having catalyst activity to decompose hydrogen peroxide, and a combination thereof.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: October 17, 2023
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION
    Inventors: Byoungsu Kim, Bo Ki Hong
  • Patent number: 11791487
    Abstract: A fuel cell system includes a cooling fan that cools a coolant, a pump that pumps the coolant, and a controller communicatively connected with the cooling fan and the pump. The controller retrieves a preset cooling-fan RPM and a preset pump RPM, optimizes the cooling-fan RPM and the pump RPM through a decrease of the cooling-fan RPM and an increase of the pump RPM such that a coolant temperature at an inlet of a fuel cell stack satisfies a specified temperature condition and a total power consumption is minimized, the total power consumption being a sum of a power consumption corresponding to the cooling-fan RPM and a power consumption corresponding to the pump RPM, and stores the optimized cooling-fan RPM and the optimized pump RPM. Besides, it may be permissible to prepare various other embodiments speculated through the specification.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: October 17, 2023
    Assignee: HYUNDAI MOBIS CO., LTD.
    Inventors: Sung Kyung Choi, Jong Bo Won
  • Patent number: 11784319
    Abstract: This electrode catalyst of the present invention contains an electrically conductive material that supports a metal or a metal oxide, wherein electrical conductivity at 30° C. is 1×10?13 Scm?1 or greater.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: October 10, 2023
    Assignee: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Miho Yamauchi, Tatsuyoshi Morimoto
  • Patent number: 11784317
    Abstract: A solid oxide fuel cell includes: a support layer mainly composed of a metal; an anode supported by the support; and a mixed layer interposed between the support and the anode, wherein the anode includes an electrode bone structure composed of a ceramic material containing a first oxide having electron conductivity and a second oxide having oxygen ion conductivity, and the mixed layer has a structure in which a metallic material and a ceramic material are mixed.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: October 10, 2023
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Xinyu Li, Chie Kawamura
  • Patent number: 11784368
    Abstract: An energy storage system and a thermal management method therefor are provided. The method is performed by a smart battery thermal management unit in the energy storage system. In the method, a charging-discharging current in a next preset time period, a current parameter of a battery cell, a predicted ambient temperature in the next preset time period, and a refrigerant returning temperature are acquired. A heat dissipation strategy with minimum total power consumption in the next preset time period is determined based on the charging-discharging current, the current parameter of the battery cell, the predicted ambient temperature, the refrigerant returning temperature and power consumption of the cooling system. The cooling system is controlled based on the heat dissipation strategy with minimum total power consumption, to cool the energy storage system.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: October 10, 2023
    Assignee: Sungrow Power Supply Co., Ltd.
    Inventor: Jianjie Zhou
  • Patent number: 11777136
    Abstract: Disclosed is a method of preparing a cathode active material useful in a sodium ion secondary battery having high reversible capacity and excellent cycle characteristics. The method for preparing a cathode active material composed of Zrw-doped NaxLiyMzOa includes the steps of (A) doping LiyMzOa with Zrw to provide Zrw-doped LiyMzOa; and (B) dissociating Li ion from the Zrw-doped LiyMzOa and inserting Na ion thereto to provide the Zrw-doped NaxLiyMzOa, wherein M is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo, Ru, and combinations thereof, and wherein 0.005<w<0.05, 0.8?x?0.85, 0.09?y?0.11, 7?x/y?10, 0.7?z?0.95, and 1.95?a?2.05. When the cathode active material is used for manufacturing a cathode for a sodium ion secondary battery, the battery can substitute for a conventional, expensive lithium ion secondary battery.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: October 3, 2023
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyung Yoon Chung, Dong Hyun Kim, Juhyeon Ahn, Jaeho Park, Ji-Young Kim, Min Kyung Cho, Byung Won Cho, Hun-Gi Jung, Minah Lee, Seungho Yu, Hyungseok Kim
  • Patent number: 11777130
    Abstract: An apparatus for stacking electrode assemblies includes: a magazine, a loading plate, a lifting member, a receiver, and an auxiliary lifting mechanism. The magazine has a magazine frame defines a storage space within which electrode assemblies can be stacked and stored. The loading plate is configured to support the electrode assemblies and has a through hole. The lifting member is positioned in the magazine frame and is coupled to the loading plate so as to vertically displace the loading plate within the magazine frame. The receiver is positioned above the magazine frame and is movable between a loading position (to temporarily support the electrode assemblies) and a retracted position (to transfer the electrode assemblies to the loading plate). The auxiliary lifting mechanism is coupled to the loading plate and includes an auxiliary lift configured to advance through the through hole of the loading plate.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: October 3, 2023
    Inventors: Jae Woong Yoo, Seong Je Jo
  • Patent number: 11769907
    Abstract: An all solid battery includes: a multilayer chip in which each of solid electrolyte layers and each of electrodes are alternately stacked, a main component of the solid electrolyte layers being phosphoric acid salt-based solid electrolyte, the plurality of electrodes being alternately exposed to a first end face and a second end face of the multilayer chip, a first external electrode provided on the first end face; a second external electrode provided on the second end face; and wherein L/W is 0.2 or more and 1.1 or less, when a length of the multilayer chip in a first direction in which the first end face faces with the second end face is L, and a width of the multilayer chip in a second direction that is vertical to the first direction and a stacking direction of the multilayer chip is W.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: September 26, 2023
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Chie Kawamura, Masashi Sekiguchi, Daigo Ito, Takato Satoh, Sachie Tomizawa
  • Patent number: 11764363
    Abstract: An electrical storage device includes high surface area fibers (e.g., shaped fibers and/or microfibers) coated with carbon (graphite, expanded graphite, activated carbon, carbon black, carbon nanofibers, CNT, or graphite coated CNT), electrolyte, and/or electrode active material (e.g., lead oxide) in electrodes. The electrodes are used to form electrical storage devices such as electrochemical batteries, electrochemical double layer capacitors, and asymmetrical capacitors.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: September 19, 2023
    Assignees: CPS Technology Holdings LLC, Clarios Germany GmbH & Co. KG
    Inventors: Richard M. Sturgeon, Dennis A. Wetzel, Robert G. Gruenstern, William J. Wruck, Ramachadran Subbaraman, James Symanski, Eberhard Meissner
  • Patent number: 11757103
    Abstract: In order to provide a gas diffusion electrode medium having high thermal conductivity despite having low density and excellent both in handleability and cell performance, provided is a gas diffusion electrode medium including carbon fiber felt including carbon fibers having an average fiber diameter of 5 to 20 ?m, wherein at least a part of the carbon fibers that constitute the carbon fiber felt have a flat part in which, in a plane view of a surface of the carbon fiber felt, a maximum value of a fiber diameter is observed to be 10 to 50% larger than the average fiber diameter, and a frequency of the flat parts at the surface of the carbon fiber felt is 50 to 200/mm2.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: September 12, 2023
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Masamichi Utsunomiya, Satoru Shimoyama, Fumitaka Watanabe
  • Patent number: 11757140
    Abstract: Dual-functional energy storage systems that couple ion extraction and recovery with energy storage and release are provided. The dual-functional energy storage systems use ion-extraction and ion-recovery as charging processes. As the energy used for the ion extraction and ion recovery processes is not consumed, but rather stored in the system through the charging process, and the majority of the energy stored during charging can be recovered during discharging, the dual-functional energy storage systems perform useful functions, such as solution desalination or lithium-ion recovery with a minimal energy input, while storing and releasing energy like a conventional energy storage system.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: September 12, 2023
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Kyoung-Shin Choi, Dohwan Nam, Margaret Lumley
  • Patent number: 11757084
    Abstract: A lithium-ion secondary battery includes an inorganic filler having a mean particle size of 1 ?m to 10 ?m. A ratio A/B is 14 to 28, where A is a weight ratio of a second binder and the inorganic filler (i.e., second binder/inorganic filler) in an insulating layer, and B is a weight ratio of a first binder and positive electrode active material particles (i.e., first binder/positive electrode active material particles) in a positive electrode active material layer.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: September 12, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinichiro Ito, Takanobu Yamada
  • Patent number: 11749832
    Abstract: Lithiated electrodes, electrochemical cells including lithiated electrodes, and methods of making the same are provided. The method includes lithiating at least one electrode in an electrochemical cell by applying current across a first current collector of the at least one electrode to a second current collector of an auxiliary electrode. The electrochemical cell may be disposed within a battery packaging and the auxiliary electrode may be disposed within the battery packaging adjacent to an edge of the electrochemical cell. The at least one electrode may include a first electroactive layer disposed on or near one or more surfaces of the first current collector, and the auxiliary electrode may include a second electroactive layer disposed at or near one or more surfaces of the second current collector. The method may further include extracting the auxiliary electrode from the battery packaging and sealing the battery packaging, which includes the pre-lithiated electrochemical cell.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: September 5, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Xingyi Yang, Mark W. Verbrugge, Raghunathan K, Qinglin Zhang
  • Patent number: 11749821
    Abstract: A fuel cell single unit including: a fuel cell element in which an anode layer and a cathode layer are formed so as to sandwich an electrolyte layer; a reducing gas supply path for supplying a gas containing hydrogen to the anode layer; an oxidizing gas supply path for supplying a gas containing oxygen to the cathode layer; and an internal reforming catalyst layer, which has a reforming catalyst for steam-reforming a fuel gas, in at least a part of the reducing gas supply path is provided. An external reformer, which has a reforming catalyst for steam-reforming the fuel gas, is provided upstream of the reducing gas supply path, and the fuel gas partially reformed by the external reformer is supplied to the reducing gas supply path.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: September 5, 2023
    Assignee: Osaka Gas Co., Ltd.
    Inventors: Mitsuaki Echigo, Hisao Onishi, Noritoshi Shinke, Yuji Tsuda
  • Patent number: 11749836
    Abstract: A composite ceramic including: a lithium garnet major phase; and a grain growth inhibitor minor phase, as defined herein. Also disclosed is a method of making composite ceramic, pellets and tapes thereof, a solid electrolyte, and an electrochemical device including the solid electrolyte, as defined herein.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: September 5, 2023
    Assignees: CORNING INCORPORATED, Shanghai Institute of Ceramics, Chinese Academy of Sciences
    Inventors: Michael Edward Badding, Yinghong Chen, Xiao Huang, Cai Liu, Xinyuan Liu, Yanxia Ann Lu, Zhen Song, Zhaoyin Wen, Tongping Xiu, Nathan Michael Zink
  • Patent number: 11742474
    Abstract: Improved negative electrodes can comprise a silicon based active material blended with graphite to provide more stable cycling at high energy densities. In some embodiments, the negative electrodes comprise a blend of polyimide binder mixed with a more elastic polymer binder with a nanoscale carbon conductive additive. The silicon-based blended graphite negative electrodes can be matched with positive electrodes comprising nickel rich lithium nickel manganese cobalt oxides to form high energy density cells with good cycling properties.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: August 29, 2023
    Assignee: Zenlabs Energy, Inc.
    Inventors: Subramanian Venkatachalam, Sanjeev Sharma, Xianyu Iris Li, Pedro A. Hernandez-Gallegos, Charan Masarapu, Sujeet Kumar, Herman A. Lopez
  • Patent number: 11731518
    Abstract: A working machine is provided which can suppress the adhesion of rain water, snow, and melting snow to an electrical connecting portion between a battery containing portion side and a battery side. An electrically driven snowplow as a working machine includes a battery pack incorporating a battery, a battery containing portion disposed so as to allow the battery pack to be inserted and removed in a direction inclined from a vertical direction, and an electrode portion configured to be connected with an output terminal of a battery disposed on an upper surface of the battery containing portion.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: August 22, 2023
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Wataru Matsuyama, Takayuki Enomoto, Makoto Yamanaka