Patents Examined by Jorge L Salazar, Jr.
  • Patent number: 11870408
    Abstract: Acoustic wave filter devices are disclosed. A device includes a layer providing or on a topmost layer of an acoustic reflector. The intermediary layer has a first region and a second region. The first region has a first layer thickness and the second region has a second layer thickness different from the first layer thickness. The device includes a first multilayer stack on the first region and a second multilayer stack on the second region of the intermediary layer. Each of the first and the second stacks includes a piezoelectric layer on a counter electrode that is located on the respective region, an input and an output electrode. Application of a radio frequency voltage between the input electrode and the counter electrode layer of the first stack creates acoustic resonance modes in the piezoelectric layer between the input and output electrodes of the first and the second stack.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: January 9, 2024
    Assignee: VTT Technical Research Centre of Finland Ltd
    Inventors: Markku Ylilammi, Tapani Makkonen, Tuomas Pensala
  • Patent number: 11863159
    Abstract: An acoustic wave filter includes first and second series-arm resonators, each including an IDT electrode including electrode fingers and a busbar electrode connecting first ends of the electrode fingers to each other. A direction in which second ends of the electrode fingers are aligned with each other crosses a propagation direction of an acoustic wave. The electrode fingers of the IDT electrodes of the first and second series-arm resonators each include an electrode-finger central portion and a wide portion located at the second end and being wider than the electrode-finger central portion. The length of the wide portion of each of the electrode fingers in the first series-arm resonator is greater than the length of the wide portion of each of the electrode fingers in the second series-arm resonator.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: January 2, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Shinichi Okada
  • Patent number: 11855609
    Abstract: An acoustic wave device includes N band pass filters with first ends connected to define a common connection and having different pass bands. At least one of the band pass filters includes acoustic wave resonators including a lithium tantalate film having Euler angles (?LT=0°±5°, ?LT, ?LT=0°±15°), a silicon support substrate, a silicon oxide film between the lithium tantalate film and the silicon support substrate, an IDT electrode, and a protective film. In at least one acoustic wave resonator, a frequency fh1_t(n) satisfies Formula (3) or Formula (4) for all m where m>n: fh1_t(n)>fu(m)??Formula (3); and fh1_t(n)<fl(m)??Formula (4). In Formulas (3) and (4), fu(m) and fl(m) represent the frequencies of the high-frequency end and the low-frequency end of the pass band in the m band pass filters.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: December 26, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Ryo Nakagawa, Hideki Iwamoto
  • Patent number: 11855603
    Abstract: Methods of manufacturing an acoustic wave device are disclosed. An anti-reflection layer can be formed over a conductive layer that is over a piezoelectric layer. The conductive layer can include aluminum, for example. The anti-reflection layer can remain distinct from the conductive layer after a heating process. A photolithography process can pattern an interdigital transducer of the acoustic wave device from one or more interdigital transducer electrode layers that include the conductive layer. The anti-reflection layer can reduce reflection from the conductive layer during the photolithography process.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: December 26, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Satoru Matsuda, Tatsuya Fujii, Yoshiro Kabe, Kenji Nagano
  • Patent number: 11855602
    Abstract: There is disclosed acoustic resonators and filter devices. An acoustic resonator device includes a piezoelectric plate, and an interdigital transducer (IDT) formed on a front surface of the piezoelectric plate. The IDT includes interleaved fingers. At least one of the interleaved fingers includes a first layer adjacent the piezoelectric plate and a second layer over the first layer, wherein a width of the first layer is constant, and wherein a width of the second layer varies along a length of the at least one interleaved finger.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: December 26, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Viktor Plesski, Julius Koskela
  • Patent number: 11843362
    Abstract: An elastic wave device includes a support substrate made of silicon, a piezoelectric film disposed directly or indirectly on the support substrate, and an interdigital transducer electrode disposed on one surface of the piezoelectric film. A higher-order mode acoustic velocity of propagation through the piezoelectric film is equal or substantially equal to an acoustic velocity Vsi=(V1)1/2 of propagation through silicon or higher than the acoustic velocity Vsi, where Vsi is specified by V1 among solutions V1, V2, and V3 with respect to x derived from Ax3+Bx2+Cx+D=0.
    Type: Grant
    Filed: September 14, 2022
    Date of Patent: December 12, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Hideki Iwamoto
  • Patent number: 11843158
    Abstract: The present application provides a trisection power divider with isolation and a microwave transmission system, where the divider includes a first hybrid ring coupler with a distribution ratio of 1:2 and a second hybrid ring coupler with a distribution ratio of 1:1; a first port of the first hybrid ring coupler is a signal input port; a second port of the first hybrid ring coupler is connected with a first port of the second hybrid ring coupler; a second port of the second hybrid ring coupler, a third port of the second hybrid ring coupler and a third port of the first hybrid ring coupler are three signal output ports of the divider; and the second port of the first hybrid ring coupler is a port with high power.
    Type: Grant
    Filed: May 12, 2023
    Date of Patent: December 12, 2023
    Assignee: The 13th Research Institute of China Electronics Technology Group Corporation
    Inventors: Zhanbiao Gu, Hongmin Gao, Zhiliang Zhang, Xiaoyong Ren, Qianhong Chen, Shujie Wang, Chao Tan, Senfeng Xu
  • Patent number: 11824518
    Abstract: An acoustic wave device includes a piezoelectric substrate including a crystal axis and an IDT electrode. When an acoustic wave propagation direction is a first direction and a direction perpendicular to the first direction is a second direction, the crystal axis of the piezoelectric substrate is inclined toward the second direction with respect to the thickness direction. The IDT electrode includes first and second electrode fingers interdigitated with each other. The portion where the first and second electrode fingers overlap in the first direction is a crossing region. The crossing region includes a center region that is centrally located in the second direction and first and second low-acoustic-velocity regions that are located on both sides of the center region in the second direction and in which the acoustic velocity is lower than the acoustic velocity in the center region. The first and second low-acoustic-velocity regions are asymmetrical.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: November 21, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kazuhiro Takigawa
  • Patent number: 11824509
    Abstract: When a thick frequency adjustment metal film of a tuning fork-type vibration piece is irradiated with a beam on a wafer for frequency coarse adjustment, projections are possibly formed on a roughened end of the frequency adjustment metal film. Such projections are pressurized and pushed down not to chip off under any impact, so that the risk of frequency fluctuations is suppressed.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: November 21, 2023
    Assignee: DAISHINKU CORPORATION
    Inventor: Hiroaki Yamashita
  • Patent number: 11817840
    Abstract: Acoustic resonator devices, filter devices, and methods of fabrication are disclosed. An acoustic resonator includes a substrate having a surface and a single-crystal piezoelectric plate having front and back surfaces. The back surface is attached to the surface of the substrate except for a portion of the piezoelectric plate forming a diaphragm that spans a cavity in the substrate. An interdigital transducer (IDT) is formed on the front surface of the single-crystal piezoelectric plate such that interleaved fingers of the IDT are disposed on the diaphragm. The IDT is configured to excite a primary acoustic mode in the diaphragm in response to a radio frequency signal applied to the IDT. At least a portion of an edge of the diaphragm is at an oblique angle to the fingers. The IDT includes a busbar disposed parallel to the edge of the diaphragm such that the interleaved fingers extend at the oblique angle from the busbar.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 14, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Ventsislav Yantchev, Patrick Turner, Viktor Plesski, Julius Koskela, Robert B. Hammond
  • Patent number: 11817839
    Abstract: A single-crystal bulk acoustic wave resonators with better performance and better manufacturability and a process for fabricating the same are described. A low-acoustic-loss layer of one or more single-crystal and/or poly-crystal piezoelectric materials is epitaxially grown and/or physically deposited on a surrogate substrate, followed with the formation of a bottom electrode and then a support structure on a first side of the piezoelectric layer. The surrogate substrate is subsequently removed to expose a second side of the piezoelectric layer that is opposite to the first side. A top electrode is then formed on the second side of the piezoelectric layer, followed by further processes to complete the BAW resonator and filter fabrication using standard wafer processing steps. In some embodiments, the support structure has a cavity or an acoustic mirror adjacent the first electrode layer to minimize leakage of acoustic wave energy.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: November 14, 2023
    Assignee: GLOBAL COMMUNICATION SEMICONDUCTORS, LLC
    Inventors: Shing-Kuo Wang, Liping Daniel Hou, Yuefei Yang
  • Patent number: 11817846
    Abstract: An electronic component includes a package substrate extending in a longitudinal direction, and chip components disposed along the longitudinal direction of the package substrate and each connected to the package substrate by a bump. A height of a bump connecting at least one chip component disposed at an end portion in the longitudinal direction among the chip components and the package substrate is greater than a height of a bump connecting at least one chip component disposed inward relative to the end portion in the longitudinal direction among the chip components and the package substrate.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 14, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Yasuaki Shin
  • Patent number: 11817845
    Abstract: Methods of making acoustic resonators and filter devices. A method includes attaching a piezoelectric plate to a substrate, and forming a conductor pattern including an interdigital transducer (IDT) on a portion of the piezoelectric plate that forms a diaphragm spanning a cavity such that interleaved fingers of the IDT are on the diaphragm. The substrate and the piezoelectric plate are the same material.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: November 14, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Neal Fenzi, Robert Hammond, Patrick Turner, Bryant Garcia, Ryo Wakabayashi
  • Patent number: 11811386
    Abstract: Acoustic resonator devices and filters are disclosed. An acoustic resonator includes a substrate and a piezoelectric plate supported by the substrate. A portion of the piezoelectric plate suspended across a cavity in the substrate forms a diaphragm. A decoupling dielectric layer is on a front surface of the diaphragm. An interdigital transducer (IDT) has interleaved fingers on the decoupling dielectric layer over the diaphragm. The IDT and piezoelectric plate are configured such that a radio frequency signal applied to the IDT excites shear acoustic waves in the diaphragm.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: November 7, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Sean McHugh
  • Patent number: 11811120
    Abstract: An orthomode junction for separating and/or combining orthogonally-polarized radiofrequency wave signals, comprises a body which has a main cavity forming a main waveguide, which has a blind end, and auxiliary cavities forming auxiliary waveguides, which communicate laterally with the main cavity in the vicinity of the blind end thereof, and a deflection insert situated at the blind end of the main cavity and facing the auxiliary cavities, the deflection insert having different shapes on the side of the auxiliary cavities respectively.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: November 7, 2023
    Assignees: STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
    Inventors: Victor Fiorese, Frederic Gianesello, Florian Voineau
  • Patent number: 11799445
    Abstract: Aspects of this disclosure relate to an acoustic wave device that includes a multi-layer interdigital transducer electrode. The acoustic wave device includes a piezoelectric layer and an interdigital transducer electrode on the piezoelectric layer. The interdigital transducer electrode includes a first interdigital transducer electrode layer positioned between a second interdigital transducer electrode layer and the piezoelectric layer. The second interdigital transducer electrode layer can include aluminum and having a thickness of at least 200 nanometers. The acoustic wave device can include a temperature compensation layer arranged such that the interdigital transducer electrode is positioned between the piezoelectric layer and at least a portion of the temperature compensation layer. Related filters, modules, wireless communication devices, and methods are disclosed.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: October 24, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Tomoya Kodama, Shinichi Hakamada, Hironori Fukuhara, Yosuke Hamaoka
  • Patent number: 11799447
    Abstract: Aspects of this disclosure relate to an acoustic wave resonator having at least two resonant frequencies. An acoustic wave filter can include series acoustic wave resonators and shunt acoustic wave resonators together arranged to filter a radio frequency signal. A first shunt resonator of the shunt acoustic wave resonators can include an interdigital transducer electrode and have at least a first resonant frequency and a second resonant frequency. Related acoustic wave resonators, multiplexers, wireless devices, and methods are disclosed.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: October 24, 2023
    Assignee: Skyworks Solutions, Inc.
    Inventors: Yasufumi Kaneda, Yiliu Wang, Tomoya Komatsu
  • Patent number: 11791797
    Abstract: An electronic device includes an insulation material layer provided on a first main surface of a piezoelectric substrate and surrounding a functional element, and a protective layer provided on the insulation material layer. The piezoelectric substrate and the insulation material layer define a hollow portion accommodating the functional element. The protective layer includes a first portion above the hollow portion, a second portion adjacent to the first portion at one end of the second portion, and a third portion adjacent to the second portion at another end of the second portion. A distance between the first main surface and a surface of the protective layer in the thickness direction is greatest at a location where the second portion is adjacent to or in a vicinity of the first portion, and the distance is shortest at a location where the second portion is adjacent to or in a vicinity of the third portion.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: October 17, 2023
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Koichiro Kawasaki
  • Patent number: 11791799
    Abstract: The present disclosure relates to a ladder-type surface acoustic wave (SAW) device, which includes a piezoelectric layer, two reflective structures, at least one series interdigital transducer (IDT) coupled between a first signal point and a second signal point, and at least one shunt IDT. The at least one shunt IDT is coupled at least between the first signal point and ground, or between the second signal point and ground. Herein, the two reflective structures, the at least one series IDT, and the at least one shunt IDT reside over the piezoelectric layer. The at least one series IDT and the at least one shunt IDT are arranged between the two reflective structures.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: October 17, 2023
    Assignee: Qorvo US, Inc.
    Inventor: Manjunath Swamy
  • Patent number: 11784633
    Abstract: The present disclosure relates to a ladder-type surface acoustic wave (SAW) device, which includes a piezoelectric layer, two reflective structures, at least one series interdigital transducer (IDT) coupled between a first signal point and a second signal point, and at least one shunt IDT. The at least one shunt IDT is coupled at least between the first signal point and ground, or between the second signal point and ground. Herein, the two reflective structures, the at least one series IDT, and the at least one shunt IDT reside over the piezoelectric layer. The at least one series IDT and the at least one shunt IDT are arranged between the two reflective structures.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: October 10, 2023
    Assignee: Qorvo US, Inc.
    Inventor: Manjunath Swamy