Patents Examined by Juan C Valencia
  • Patent number: 11591526
    Abstract: A process for upgrading a hydrocarbon feed includes passing the hydrocarbon feed and an aromatic bottoms stream to an FCC unit including an FCC reactor and a catalyst regenerator. The hydrocarbon feed is hydrogen-rich having at least 12 wt. % hydrogen, and the aromatic bottoms stream is a bottoms stream produced from an aromatics recovery complex for processing reformate from naphtha reforming. The hydrocarbon feed and aromatic bottoms stream are cracked over the FCC catalysts to produce an effluent and spent FCC catalysts having coke deposits. The spent FCC catalyst is regenerated through combustion of the coke deposits. The hydrogen-rich hydrocarbon feed does not produce enough coke to satisfy the heat demand of the FCC reactor. Cracking the aromatic bottoms stream increases the amount of coke so that combustion of the additional coke during regeneration produces additional heat to satisfy the heat demand of the FCC reactor.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: February 28, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins
  • Patent number: 11578277
    Abstract: The present invention discloses an integrated process scheme for producing (i) high-octane gasoline blending stream (ii) high aromatic heavy naphtha stream which is a suitable feedstock for benzene, toluene, and xylene (BTX) production and (iii) high cetane ultra-low sulphur diesel (ULSD) stream suitable for blending in refinery diesel pool.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: February 14, 2023
    Assignee: INDIAN OIL CORPORATION LIMITED
    Inventors: Nayan Das, Mainak Sarkar, Ganesh Vitthalrao Butley, Ramesh Karumanchi, Sarvesh Kumar, Madhusudan Sau, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar
  • Patent number: 11578274
    Abstract: A petroleum hydrocarbon multi-stage fluid catalytic reaction method and reactor are described. The method implements a sectional multi-stage reaction in one reactor and comprises primary-stage and secondary-stage catalytic cracking reactions of feedstock oil and primary-stage and secondary-stage catalytic cracking reactions of light hydrocarbons and/or cycle oil, which occur in different reaction regions of the reactor. The primary-stage reaction of the light hydrocarbon and/or circulation oil is carried out in an independent reaction region. The reactor comprises a first reaction section, a catalyst splitter, a third reaction section, a second reaction section and a settler.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: February 14, 2023
    Assignee: QINGDAO JINGRUN PETROCHEMICAL DESIGN INSTITUTE CO., LTD.
    Inventors: Baozhen Shi, Lin Shi
  • Patent number: 11578281
    Abstract: A process for the manufacture of a useful product from carbonaceous feedstock of fluctuating compositional characteristics, comprising the steps of: continuously providing the carbonaceous feedstock of fluctuating compositional characteristics to a gasification zone; gasifying the carbonaceous feedstock in the gasification zone to obtain raw synthesis gas; recovering at least part of the raw synthesis gas from the gasification zone and supplying at least part of the recovered raw synthesis gas to a partial oxidation zone; equilibrating the H2:CO ratio of the raw synthesis gas in the partial oxidation zone to obtain equilibrated synthesis gas; recovering at least part of the equilibrated synthesis gas from the partial oxidation zone and treating the gas to remove impurities and generate a fine synthesis gas; and converting the optionally adjusted fine synthesis gas into the useful product in a further chemical reaction requiring a usage ratio.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: February 14, 2023
    Assignee: Velocys Technologies Ltd
    Inventors: Ivan Philip Greager, Roger Allen Harris, Neil Alexander King, Soumitra R. Deshmukh, Zheyan Qiu, Ashish Gupta
  • Patent number: 11578273
    Abstract: A method of upgrading an overflash stream from a vacuum distillation unit comprising the steps of separating the overflash stream from an atmospheric residue stream, the overflash stream comprises an overflash fraction having a T10% between 475 and 530° C. and a T90% between 600 and 700° C.; introducing the reactor feed to a supercritical reactor at a temperature between 380° C. and 500° C. and a pressure between 25 MPa and 30 MPa; maintaining upgrading reactions in the supercritical reactor to upgrade the overflash fraction such that a reactor effluent comprises upgraded hydrocarbons relative to the overflash fraction; reducing a temperature of a reactor effluent in a cooling device to produce a cooled stream; reducing a pressure of the cooled stream in a depressurizing device to produce a discharged stream; and separating the discharged stream in a gas-liquid separator to produce a liquid phase product.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: February 14, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Young-Kyoung Ahn
  • Patent number: 11578275
    Abstract: The invention relates to producing upgraded renewable oil. Renewable crude oil is provided whose oxygen content, water content, and total acid number are within predetermined ranges. Respective fractions of the oil have boiling points below 350° C. and above 450° C. After the oil is pressurized, and hydrogen is added, the mixture is heated and contacted with a heterogeneous catalyst in a first reaction zone with weight based hourly space velocity (WHSV) of 0.1 to 1 h-1. The resultant partially hydrogenated and deoxygenated oil is further heated and contacted with a heterogeneous catalyst in a second reaction zone at WHSV of 0.1 to 1.5 h-1. Low and high boiling point liquid hydrocarbon fractions of the product of the second reaction zone are sent to third and fourth reaction zones, respectively, to be contacted with hydrogen and a heterogeneous catalyst under respective heating conditions and WHSV of 0.1 to 1 h-1.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: February 14, 2023
    Assignee: STEEPER ENERGY APS
    Inventors: Steen B. Iversen, Claus Uhrenholt Jensen, Julie Katerine Rodriguez Guerrero
  • Patent number: 11572514
    Abstract: Methods for preventing elemental sulfur deposition from a hydrocarbon fluid is disclosed. A mercaptan is added to a hydrocarbon fluid that has elemental sulfur and reacted with the elemental sulfur to produce a disulfide and hydrogen sulfide. Amines and/or surfactants can assist with the process. Secondary reactions between the disulfide and the elemental sulfur result in a polysulfide and a solvated sulfur-disulfide complex. The disulfide, hydrogen sulfide, polysulfide and solvated sulfur-disulfide complex do not deposit, and can optionally be removed.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: February 7, 2023
    Assignee: CONOCOPHILLIPS COMPANY
    Inventors: Jay Locklear, David P. Cope
  • Patent number: 11566184
    Abstract: Rotating elements receivable within an extractor trough of an extractor configured for non-aqueous extraction of bitumen from oil sands are described. The rotating element can include a shaft operatively couplable to a motor, and projections extending outwardly from the shaft and being removably secured thereto. The rotating element can also include a shaft mounting structure couplable to a shaft, comprising a shaft receiving hub configured for receiving the shaft therein. The rotation of the rotating element can provide digestion and extraction of bitumen from the oil sands while advancing solids in a downstream direction within the extractor trough, as solvent diluted bitumen flows in an upstream direction toward a liquid outlet. Methods for servicing a rotating element and for manufacturing a non-aqueous extraction (NAE) extractor are also provided.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: January 31, 2023
    Assignees: SUNCOR ENERGY INC., EXERGY SOLUTIONS
    Inventors: Ali Abbaspour, Jiayi Claire Cao, Farid Vaezi Ghobaeiyeh, Martin Hadzima, Iftikhar Huq
  • Patent number: 11566190
    Abstract: Integrated processes and systems for the production of distillate hydrocarbons and coke. The process may include feeding a hydrocarbon feedstock, comprising a residuum hydrocarbon fraction, to a residue hydrocracking reactor system to convert hydrocarbons therein, producing a hydrocracked effluent. The hydrocracked effluent may then be fed to a separation system, separating the hydrocracked effluent into one or more distillate hydrocarbon fractions and a vacuum residue fraction. The vacuum residue fraction may be fed to a coker system, converting the vacuum residue fraction into a coke product and a coker vapor effluent, recovering the coke product, and feeding the coker vapor effluent to the separation system. The one or more distillate hydrocarbon fractions are hydroprocessed to produce a hydroprocessed effluent, and the hydroprocessed effluent is separated into product distillate hydrocarbon fractions.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: January 31, 2023
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Suresh B. Koduru, Arun Arora
  • Patent number: 11555154
    Abstract: The process removes hydrogen sulfide from hydrotreated gas by TSA. Hydrogen sulfide adsorbs on the adsorbent while allowing hydrogen in the hydrotreated gas to pass the adsorbent to provide a desulfided hydrogen gas stream and a sulfided adsorbent. A regenerant gas stream can be contacted with the sulfided adsorbent at a swing temperature to desorb hydrogen sulfide from the adsorbent into the regenerant gas stream. The regenerant gas stream can then be recycled to a hydrotreating reactor for processing biorenewable feed to provide hydrogen sulfide to the reactor. The desulfided gas stream can be purified to remove impurities such as carbon oxides and recycled to the hydrotreating reactor and/or used as the regenerant gas stream.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: January 17, 2023
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Bradley P. Russell, Ashish Mathur, Hari S. Bajpai
  • Patent number: 11555156
    Abstract: A catalytic upgrading process includes introducing a feed comprising crude oil to a first catalytic deasphalting reactor to deasphalt the feed, thereby producing polymerized asphaltenes and deasphalted oil (DAO). The DAO is introduced to a steam cracking unit, thereby producing pyrolysis gas (PG), which is introduced into a selective hydrogenation unit, thereby producing an olefin-free product, which can then be introduced to a separation unit. The resulting benzene-toluene-xylenes (BTX)-containing stream and liquid petroleum gas (LPG) are separated, and the BTX-containing stream is introduced to a BTX complex to produce refined BTX. After deasphalting, a wash solvent may be introduced into the first catalytic deasphalting reactor to remove the polymerized asphaltenes, regenerate the catalyst, and produce a mixture comprising the wash solvent and the polymerized asphaltenes. The wash solvent is separated from the polymerized asphaltenes.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: January 17, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Miao Sun, Zhonglin Zhang, Sohel K. Shaikh, Omer Koseoglu
  • Patent number: 11549068
    Abstract: Provided are embodiments that include a hydrocarbon fluid processing system including an ultrasonic hydrocarbon degassing unit including a vapor recovery vessel adapted to direct flow of a hydrocarbon fluid mixture along a flowpath extending through an interior of the vapor recovery vessel, and an ultrasonic transducer system disposed inside the vapor recovery vessel and in the flowpath of the hydrocarbon fluid mixture. The hydrocarbon fluid mixture including a hydrocarbon liquid and a gas entrained in the hydrocarbon liquid, the ultrasonic transducer system adapted to transmit ultrasonic signals into the hydrocarbon fluid mixture along the flowpath, and the ultrasonic signals adapted to separate the gas from the hydrocarbon liquid.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: January 10, 2023
    Assignee: CONOCOPHILLIPS COMPANY
    Inventor: Brian Colt Petty
  • Patent number: 11549069
    Abstract: A process for hydroprocessing a hydrocarbon feed of the present disclosure includes contacting the hydrocarbon feed with hydrogen in the presence of at least one hydroprocessing catalyst in a two-phase hydroprocessing unit, where the at least one hydroprocessing catalyst is a solid catalyst and contacting produces a hydroprocessed effluent having a reduced concentration of one or more of metals, nitrogen, sulfur, aromatic compounds, or combinations of these. The process further includes combining the hydroprocessed effluent with make-up hydrogen downstream of the two-phase hydroprocessing unit to produce a hydrogen saturated hydroprocessed effluent, separating the hydrogen saturated hydroprocessed effluent in a separation system to produce a hydrogen-saturated high-pressure bottom stream, a hydroprocessed product stream, and a gaseous effluent, and passing at least a portion of the hydrogen-saturated high-pressure bottom stream back to the two-phase hydroprocessing unit.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: January 10, 2023
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 11549065
    Abstract: A process for treating a hydrocarbon stream to remove polynuclear aromatic (PNA) and heavy polynuclear aromatic (HPNA) compounds includes contacting the hydrocarbon stream with an adsorbent in an adsorption unit to adsorb the PNA and HPNA compounds onto the adsorbent to produce a treated hydrocarbon stream and regenerating the adsorbent. Regenerating the adsorbent may include contacting the adsorbent with a solvent comprising a disulfide oil, such as a disulfide oil effluent from a mercaptan oxidation unit. The solvent comprising the disulfide oil desorbs the PNA and HPNA compounds from the adsorbent into the solvent to produce a desorption effluent. The treated hydrocarbon stream can be passed to a hydrocracking unit that hydrocracks the treated hydrocarbon stream to produce a hydrocracker effluent that includes greater value petrochemical products or intermediates.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: January 10, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Ali Alzaid
  • Patent number: 11542442
    Abstract: Hydrocracked bottoms fractions are treated to separate HPNA compounds and/or HPNA precursor compounds and produce a reduced-HPNA hydrocracked bottoms fraction effective for recycle. A process for separation of HPNA and/or HPNA precursor compounds from a hydrocracked bottoms fraction of a hydroprocessing reaction effluent comprises contacting the hydrocracked bottoms fraction with heteropoly acid compounds to promote adsorption of HPNAs onto the heteropoly acids and to produce a heteropoly acid treated hydrocracked bottoms fraction, that is recycled within the hydrocracking operation.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: January 3, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Ali Alzaid
  • Patent number: 11535802
    Abstract: Methods and systems for reducing sulfur content in crude oil are provided. The methods and systems apply a first alkaline aqueous solution to crude oil to produce alkaline-treated crude oil, apply an acid aqueous solution to the alkaline-treated crude oil to produce acid-treated crude oil, apply a second alkaline aqueous solution to the acid-treated crude oil to produce neutralized crude oil; and separate residual water that contains sulfur from the neutralized crude oil to produce treated crude oil that has less sulfur content than the crude oil before the treatment.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: December 27, 2022
    Assignee: Santa Fe Resources Development, Inc.
    Inventors: Robert A. Shuey, Stephen J. Gorton, Robert L. Cargill
  • Patent number: 11530360
    Abstract: A multi-stage process for transforming a high sulfur ISO 8217 compliant Feedstock Heavy Marine Fuel Oil involving a core desulfurizing process that produces a Product Heavy Marine Fuel Oil that can be used as a feedstock for subsequent refinery process such as anode grade coking, needle coking and fluid catalytic cracking. The Product Heavy Marine Fuel Oil exhibits multiple properties desirable as a feedstock for those processes including a sulfur level has a maximum sulfur content (ISO 14596 or ISO 8754) between the range of 0.05 mass % to 1.0 mass. A process plant for conducting the process is also disclosed.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: December 20, 2022
    Assignee: Magēmā Technology LLC
    Inventors: Michael Joseph Moore, Bertrand Ray Klussmann, Carter James White
  • Patent number: 11505753
    Abstract: The present invention describes the coprocessing of a lignocellulosic liquid stream and an intermediate fossil stream in the oil refining process comprising the steps of (a) contacting said intermediate fossil stream and said lignocellulosic liquid stream with a stream of solvent of C3-C10 hydrocarbons in an extraction section, obtaining a stream of extract with solvent and a stream of raffinate with solvent; and (b) sending said stream of extract with solvent to a separation section, obtaining a deasphalted oil stream comprising solvent-free carbon of renewable origin and a stream of recovered solvent. The present invention further relates to a process for producing fuels from the deasphalted oil stream comprising carbon of renewable origin, wherein the process comprises sending the deasphalted oil stream to a conversion section of an oil refinery.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: November 22, 2022
    Assignee: Petróleo Brasileiro S.A.—Petrobras
    Inventors: Vitor Loureiro Ximenes, Paulo Cesar Peixoto Bugueta, Marlon Brando Bezzera De Almeida, Marco Antonio Gomes Teixeira, Fabio Leal Mendes, Andrea De Rezende Pinho, Alexander Rangel Bastos, Adriano Do Couto Fraga
  • Patent number: 11492558
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: November 8, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: 11492560
    Abstract: The invention pertains to a process for deep desulphurization of low sulphur content feedstock comprising the steps of providing a low sulphur content hydrocarbon feedstock and contacting said hydrocarbon feedstock with a cobalt-molybdenum desulphurizing system or a nickel-molybdenum desulphurizing system in an oxide form in order to obtain a very low sulphur product comprising less than 5 ppm by weight sulphur.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: November 8, 2022
    Assignee: TOTAL MARKETING SERVICES
    Inventors: Alessandro Chieregato, Jean-Pierre Dath, Stéphane Kressmann