Patents Examined by Kailash C. Srivastava
  • Patent number: 9241996
    Abstract: The present invention relates to a method for enhancing the activity of kinase inhibitors in target cells, and more specifically for enhancing the activity of tyrosine kinase inhibitors (TKIs), said method comprising contacting a cell with a kinase inhibitor and a photosensitizing agent and irradiating said cell with light of a wavelength effective to activate the photosensitizing agent, and to the use of this method for enhancing the effects of kinase inhibitors or kinase inhibitor-based drugs in particular to achieve cell death, for example, in cancer treatment and other diseases or conditions in which kinase inhibitors, such as TKIs, have a beneficial effect.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 26, 2016
    Assignee: PCI BIOTECH AS
    Inventors: Anders Høgset, Anette Weyergang, P{dot over (a)}l Kristian Selbo, Kristian Berg
  • Patent number: 9238674
    Abstract: In one aspect, methods relate to the field of recombinant DNA therapeutics. Methods may involve bio-informatics design, synthesis of artificial genes for a human insulin precursor having a leader peptide coding sequence, cloning artificial genes into an expression vector, and expression in an organism such as one selected from the genus Pichia. In another aspect, methods may include downstream processing for obtaining protein precursor molecules and subsequent conversion of protein precursor molecules to functional proteins.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: January 19, 2016
    Assignee: Bigtec Private Limited
    Inventors: Mulakkapurath Narayanan Manoj, Venkata Ramachandra Rao Vasamsetty, Madhuri Baliga, Kirubakaran Naveen Kumar, Chandrasekhar Bhaskaran Nair, Pillarisetti Venkata Subbarao
  • Patent number: 9232812
    Abstract: Apparatus and methods for hydrolyzing protein-containing raw material into water soluble protein and other products. The apparatuses and methods comprise an optional collection or processing stage in which protein-containing raw material, such as fish or animal carcasses from food production plants, are collected and optionally processed. The raw material is then reacted with one or more enzymes to hydrolyze the protein present, after which the one or more enzymes are inactivated and the components separated. The processes and apparatuses, which can be run as a batch processes or, advantageously as a continuous processes, can yield water soluble protein, oils, bone meal and other products that have utility as food or food additives.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: January 12, 2016
    Assignee: MARINE BIOPRODUCTS A.S.
    Inventors: Stig Soerensen, Kjartan Sandnes, Harald Hagen, Karstein Pedersen
  • Patent number: 9234173
    Abstract: Provided are methods for producing progenitor/precursor cells from a population of initiating cells (ICP) that have a density of less than 1.072 g/ml and at least 25% of which are CD31Bright by in vitro stimulating the ICP with different factors.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: January 12, 2016
    Assignee: Kwalata Trading Ltd.
    Inventors: Yael Porat, Valentin Fulga, Svetlana Porozov, Adina Belleli
  • Patent number: 9200033
    Abstract: The present invention belongs to the biomedicine field and specifically concerns an enzyme-degradable polymer and the application thereof. To solve the problem of low sensitivity of the existing assay reagents, the present invention provides an enzyme-degradable polymer and the related application of the polymer. The present invention also provides hydrogels, nano-particles, fluorescent dye-labeled enzyme substrates and kits (packages) for detection or activity-analysis of biological enzymes based on the enzyme-degradable polymer. The formula of the enzyme-degradable polymer is P1-(aa)N-(AA)n-X X=[formula 1] wherein, (aa)N is a non-enzyme substrate domain, the N aa may be different (no correlation), and N is a non-negative integer; (AA)n is an enzyme substrate domain, the n AA may be different, and n is a non-negative integer; P1 is a protecting group of ?-amino or functional group; P2 is a protecting group of ?-amino; P3 is —NH2, a small molecule compound or a fragment of a polymer.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: December 1, 2015
    Assignee: KAREBAY BIOCHEM INC.
    Inventor: Lijun Dai
  • Patent number: 9187770
    Abstract: The process for the production of alcohol and/or solvent from a biomass feedstock comprises the stages for pretreatment (P) of the biomass feedstock, for enzymatic hydrolysis (H) of the pretreated substrate, and for fermenting the hydrolyzate (F). To reduce the size of the fermenters, at least a portion of the solid residue contained in the hydrolyzate is extracted (Ex1) in such a way as to obtain a stream of solid residue (9) comprising lignin and a hydrolyzate (8) that is low in solid residue. Then, the stream of solid residue is washed (L) with a liquid stream in such a way as to recover a sugar-enriched liquid stream (15). The sugar-enriched liquid stream (15) is recycled in the enzymatic hydrolysis stage (H) to be able to upgrade the sugars without providing dilution of the streams in the process.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: November 17, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Caroline Aymard, Pierre Antoine Bouillon, Stephanie Fleurier, Sylvain Louret, Larissa Perotta, Eszter Toth
  • Patent number: 9163275
    Abstract: The current invention provides a method for directly converting histopathologically processed biological samples, tissues, and cells into a multi-use biomolecule lysate. This method allows for simultaneous extraction, isolation, solublization, and storage of all biomolecules contained within the histopathologically processed biological sample, thereby forming a representative library of said sample. This multi-use biomolecule lysate is dilutable, soluble, capable of being fractionated, and used in any number of subsequent experiments.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: October 20, 2015
    Assignee: EXPRESSION PATHOLOGY, INC.
    Inventors: Marlene M. Darfler, David B. Krizman
  • Patent number: 9132197
    Abstract: The present invention provides processes for producing porous silk fibroin scaffold material. The porous silk fibroin scaffold can be used for tissue engineering. The porosity of the silk fibroin scaffolds described herein can be adjusted as to mimic the gradient of densities found in natural tissue. Accordingly, methods for engineering of 3-dimensional tissue, e.g. bone and cartilage, using the silk fibroin scaffold material are also provided.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: September 15, 2015
    Assignees: Massachusetts Institute of Technology, Trustees of Tufts College
    Inventors: David L. Kaplan, Rina Nazarov, Gordana Vunjak-Novakovic, Lorenz Meinel
  • Patent number: 9133499
    Abstract: A method of isolating cells includes providing a microfluidic device having at least one microfluidic channel coupled to an inlet and an outlet, the at least one microfluidic channel comprises at least one expansion region disposed along the length thereof. The at least one expansion region is an abrupt increase in a cross-sectional dimension of the at least one microfluidic channel configured to generate a vortex within the at least one expansion region in response to fluid flow. A solution containing a population of cells at least some of which have diameters ?10 ?m flows into the inlet. A portion of cells is trapped within vortex created within the at least one expansion region. The trapped cells may then released from the expansion region.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: September 15, 2015
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Dino Di Carlo, Soojung C. Hur, Albert J. Mach
  • Patent number: 9121017
    Abstract: The present invention provides a thermoresponsive nanoparticle useful for the stabilization of enzymes in environments having a temperature greater than thirty degrees Centigrade. The thermoresponsive nanoparticle has (a) a functionalized enzyme conjugate having one or more enzymes or biological catalysts, the enzymes or biological catalysts are modified with palmitic acid N-hydroxysuccinimide ester and acryclic acid N-hydroxysuccinimide ester, and (b) a thermally responsive polymer, wherein the functionalized enzyme conjugate is encapsulated within the thermally responsive polymer. A nanocatalyst is provided that has one or more proteins. The proteins are covalently immobilized and encapsulated within a thermally responsive polymer shell. The proteins are one or more enzymes or biological catalysts. A method for protecting the proteins is also set forth.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: September 1, 2015
    Assignee: FLIR Detection, Inc.
    Inventors: Jeremy P. Walker, Anna M. Leech
  • Patent number: 9119391
    Abstract: Methods, systems and compositions are disclosed wherein normal, non-transformed, healthy biological cells are protected from oxidative stress, radiation therapy and chemotherapy while diseased, transformed cells, such as, cancer cells, are provided no protection by the biocompatible, polymer coated nanoceria composition of the present invention. The polymer-coated nanoceria preparation herein exhibits no toxicity to normal cells and exhibits pH-dependent antioxidant properties at neutral or physiological pH values, between approximately 6.5 to approximately 11.0 and is inactive as an antioxidant at acidic pH values between approximately 2.0 to approximately 6.4. Improved therapeutic agents and cytoprotecting devices are based on the newly discovered, pH dependent properties of polymer-coated nanoceria that provide selective cytoprotection.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: September 1, 2015
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Jesus Manuel Perez, Atul Asati, Sudip Nath, Charalambos Kaittanis
  • Patent number: 9114194
    Abstract: Described are immobilized biologically active entities that retain significant biological activity following mechanical manipulation of a substrate material to which the entities are immobilized.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: August 25, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Robert L. Cleek, Michael D. Daly, Krzysztof R. Pietrzak
  • Patent number: 9097702
    Abstract: A three-dimensional cell culture system is provided comprising one or more cell types of interest incorporated in a natural or synthetic hydrogel. An apparatus for high-throughput drug screening is also provided comprising a plurality of three-dimensional cell culture systems and a dispenser for placing at least one three-dimensional cell culture system into a pre-determined well of a multiwell plate. A method for high-throughput drug screening is also provided that comprises providing a test agent, providing a three-dimensional cell culture system, determining a first cellular response of the cell of interest before culturing in the presence of the agent, culturing the cell of interest in the cell culture system in the presence of the agent, determining a second cellular response of the cell of interest after culturing in the presence of the agent, and comparing the first and second cellular responses.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: August 4, 2015
    Assignee: Cornell University
    Inventor: Claudia Fischbach
  • Patent number: 9090462
    Abstract: The invention enables efficient, rapid, and sensitive enumeration of living cells by detecting microscopic colonies derived from in situ cell division using large area imaging. Microbial enumeration tests based on the invention address an important problem in clinical and industrial microbiology—the long time needed for detection in traditional tests—while retaining key advantages of the traditional methods based on microbial culture. Embodiments of the invention include non-destructive aseptic methods for detecting cellular microcolonies without labeling reagents. These methods allow for the generation of pure cultures which can be used for microbial identification and determination of antimicrobial resistance.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: July 28, 2015
    Assignee: Rapid Micro Biosystems, Inc.
    Inventor: Don Straus
  • Patent number: 9068182
    Abstract: A cell culture polysaccharide microcarrier includes (1) a cross-linked polysaccharide microcarrier base having a neutral or negative charge at pH 7, and (ii) a polypeptide conjugated to the base. The polypeptide may contain a cell adhesive sequence, such as RGD. Cells cultured with such microcarriers exhibit peptide-specific binding to the microcarriers.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: June 30, 2015
    Assignee: Corning Incorporated
    Inventors: Sophie Deshayes, David Henry, Martial Hervy
  • Patent number: 9063132
    Abstract: An assay method and device can perform at least one (e.g., at least two) assays on a single aliquot of a sample liquid. The device can mix a sample liquid with assay reagents including magnetically susceptible particles. The device is configured to create a sample liquid-air interface with the sample liquid. The magnetically susceptible particles can be located (via an applied magnetic field) at the liquid-air interface when a second liquid contacts the interface to form a liquid-liquid interface. The magnetic particles travel across the liquid:liquid interface to the second liquid. The magnetically susceptible particles are configured to transport an analyte across the interface into the second liquid. An assay for the analyte is performed in the second liquid. An assay for another analyte can also be performed in the sample liquid.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: June 23, 2015
    Assignee: INVERNESS MEDICAL SWITZERLAND GMBH
    Inventors: John William Dilleen, Phillip Lowe, Ruth Polwart, Jennifer Hay, Claus Marquordt, Steven Alexander Keatch, Steven Howell, Alan Thomson
  • Patent number: 9055739
    Abstract: A composition for the cryopreservation of cells according to the present invention at least comprises sericin and one or more components selected from the group consisting of amino acids and saccharides. Further, a method for the cryopreservation of cells according to the present invention comprises the steps of placing target cells in the abovementioned composition for the cryopreservation of cells and cryopreserving them. According to the composition for the cryopreservation of cells of the present invention, cells can be cryopreserved over a long period of time without the use of serum and components derived from serum.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: June 16, 2015
    Assignee: SEIREN KABUSHIKI KAISHA
    Inventors: Yoichi Kato, Masahiro Sasaki, Hideyuki Yamada
  • Patent number: 9051583
    Abstract: Provided herein are silica shell particles modified on their surface with biomolecules, methods of making these particles, and methods of using these particles, e.g., in transfection methods, methods of inhibiting gene expression, and methods of delivering a therapeutic.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: June 9, 2015
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, Kaylie L. Young, Alexander Wesley Scott, Liangliang Hao, Sarah Mirkin
  • Patent number: 9045726
    Abstract: After culturing blood, a culture liquid determined as positive is transplanted into a plate medium and a bacterial cell suspension that is directly usable for identifying and testing antibiotics-sensitivity is prepared without forming colonies. Provided are a device for automatically analyzing microorganisms and a method therefor whereby blood culture and an identification and antibiotics-sensitivity test can be continuously operated. A device for automatically analyzing microorganisms which is configured so that a blood culture test and an identification and antibiotics-sensitivity test can be automatically and continuously conducted, wherein means for pretreating a cultured blood sample comprises a mechanism for removing culture liquid components in the course of the blood culture and a mechanism for controlling the microbial concentration (bacterial cell count) to a constant level after the blood culture.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: June 2, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventor: Hiroko Fujita
  • Patent number: 9034595
    Abstract: Systems and methods are provided for enhancing the integration of processes for recovering products from algae-derived biomass. The enhanced process integration allows for increased use of input streams and other reagents that are derived from renewable sources. This increases the overall renewable character of the products extracted from the algae-derived biomass. The process integration can include exchange of input streams or energy between an algae processing system and a system for processing non-algal biomass. One example of improving process integration is using oxygenates that are generated in a renewable manner as a reagent for enhancing the algae processing system.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: May 19, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Paul D. Oldenburg, Michel Daage, Virginia M. Roberts, Paul J. Berlowitz, David C. Long, James R. Bielenberg