Patents Examined by Kiho Kim
  • Patent number: 11614406
    Abstract: Embodiments of the present disclosure are directed to systems and methods for inspecting solar modules, and in particular systems and methods incorporating high-power light sources to impart ultraviolet fluorescence of solar modules. The systems and methods can include a filter and/or a camera.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 28, 2023
    Assignee: The Southern Company
    Inventors: William B. Hobbs, Jr., Braden H. Gilleland
  • Patent number: 11612371
    Abstract: A method for fluoroscopy energizes a radiation source to form a scout image on a detector and processes the scout image to determine and report a radiation field position with respect to a predetermined zone of the detector. The radiation source is energized for fluoroscopic imaging of a subject when the reported radiation field position is fully within the predetermined zone.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: March 28, 2023
    Assignee: Carestream Health, Inc.
    Inventors: Samuel Richard, Xiaohui Wang, Michael C. Lalena
  • Patent number: 11612365
    Abstract: An apparatus for detecting a locating medium in tissue includes a probe, and a console. The probe includes a handle and a detector disposed on a distal end of the probe. The console is in communication and includes a display. The display has a first graphical representation and a second graphical representation. The first graphical representation is configured to depict a count real-time count based on a signal from the detector. The second graphical representation is configured to depict a target count.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: March 28, 2023
    Assignee: Devicor Medical Products, Inc.
    Inventors: Trevor W. V. Speeg, Michael E. Henley, Brian Michael Ruffner, Michael B. Watts, Harry Kyuhoon Ahn, Elijah Kreider
  • Patent number: 11614921
    Abstract: A true random number generator is presented that includes a CMOS matrix detector with a top surface. A shell is positioned over the top surface, and the shell includes a radiation source and a luminophore or scintillator constructed to emit photons towards the top surface when the luminophore or scintillator is struck by electrons from the radioactive decay of the source of the radiation. The CMOS detector matrix is constructed to detect the photons emitted from the luminophore or scintillator and to produce a signal for the detected photons. The signal is communicated to a processor that produces true random numbers based on the signal from the detected photons.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: March 28, 2023
    Assignee: RANDAEMON sp. z o.o.
    Inventors: Jan Jakub Tatarkiewicz, Wieslaw Bohdan Kuzmicz
  • Patent number: 11614324
    Abstract: Aspects of the invention include a non-destructive bond line thickness measurement of thermal interface material on silicon packages. A non-limiting example computer-implemented method includes receiving a chip mounted on a laminate and depositing a high-density material on the chip. The computer-implemented method deposits a thermal interface material on the chip and lids the chip, and the laminate with a lid. The computer-implemented method X-rays the lid, the chip, and the laminate to produce an X-ray and measures, using a processor, from the X-ray a bond line thickness of the TIM as a distance from a bottom of the lid to a top surface of the high-density material.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: March 28, 2023
    Assignee: International Business Machines Corporation
    Inventors: Hongqing Zhang, Jay A. Bunt, David J. Lewison, Joyce Molinelli Acocella, Yu Luo
  • Patent number: 11607135
    Abstract: Signal processing techniques that can include an embedded software low-noise response pulse detection, which can help provide an enhanced signal-to-noise characteristic, such as can help permit highly specific fast IR spectroscopic tissue analysis. Using a difference between (1) response signal values during a first time period duration of a response pulse from a tissue sample illuminated by illumination pulse, and (2) response signal values for a similar first time period duration between response pulses, for a low duty cycle (e.g., less than 50%, 10% or even at about 5% duty cycle) illumination pulse, accumulation of noise in the response signal between electromagnetic illumination pulses can be limited. In particular, the described signal pre-processing techniques can help extract meaningful information for performing spectroscopic analysis and characterization of the tissue sample despite amplitude and temporal variations that can be encountered when using the system.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: March 21, 2023
    Assignees: IR MEMTEK LLC, OHIO STATE INNOVATION FOUNDATION
    Inventors: James V. Coe, Jr., Rebecca C. Bradley
  • Patent number: 11610133
    Abstract: An apparatus for producing an infrared spectrum according to one example of the present disclosure includes: a toxic chemical gas and background infrared spectrum acquisition portion of acquiring a background of a target area and an infrared spectroscopic signal of a gas contaminant plume existing in the background; and a toxic chemical gas infrared spectrum generation portion of training a Generative Adversarial Network (GAN) using acquired background radiation intensity data as learning data, and automatically generating a toxic chemical gas simulation infrared spectrum signal according to an environment setting inputted from a user using a learned GAN. According to the present disclosure, there is an effect that an infrared spectrum of atmosphere contaminated by a toxic chemical gas may be acquired without outdoor experiments using a real toxic chemical gas.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: March 21, 2023
    Assignee: AGENCY FOR DEFENSE DEVELOPMENT
    Inventors: Chang Sik Lee, Jong Seon Kim, Hyeon Jeong Kim
  • Patent number: 11604290
    Abstract: Low-power, dual sensitivity thin oxide FG-MOSFET sensors in RF-CMOS technology for a wireless X-ray dosimeter chip, methods for radiation measurement and for charging and discharging the sensors are described. The FG-MOSFET sensor from a 0.13 ?m (RF-CMOS process, includes a thin oxide layer having a device region, a source and a drain associated with the device well region, separated by a channel region, a floating gate extending over the channel region, and a floating gate extension extending over the thin oxide layer adjacent to the device well region. In a matched sensor pair for dual sensitivity radiation measurement, the floating gate and the floating gate extension of a FG-MOSFET higher sensitivity sensor are without a salicide layer or a silicide layer formed thereon and the floating gate and the floating gate extension of a FG-MOSFET lower sensitivity sensor have a salicide layer or a silicide layer formed thereon.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 14, 2023
    Inventors: Behzad Yadegari, Steven McGarry, Langis Roy
  • Patent number: 11600497
    Abstract: A semiconductor review tool receives absolute Z-height values for the semiconductor wafer, such as a semiconductor wafer with a beveled edge. The absolute Z-height values can be determined by a semiconductor inspection tool. The semiconductor review tool reviews the semiconductor wafer within a Z-height based on the absolute Z-height values. Focus can be adjusted to within the Z-height.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: March 7, 2023
    Assignee: KLA CORPORATION
    Inventors: Sandeep Madhogarhia, Hari Sriraman Pathangi, Rohit Bhat
  • Patent number: 11598718
    Abstract: A method of analysing an aqueous fluid comprising obtaining a 2D-IR spectrum of a sample of the aqueous fluid using a 2D-IR spectrometer configured to apply a sequence of IR pulses to the sample, wherein the sequence comprises a pump process followed by a probe pulse, where the pump process is a single pump pulse or a sequence of a first pump pulse and a second pump pulse, and a waiting time Tw between applying the single pump pulse or the second pump pulse and applying the probe pulse is from 150 to 350 fs.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: March 7, 2023
    Assignee: The University of York
    Inventors: Matthew Baker, Neil T. Hunt, Samantha Rutherford, Gordon Hithell
  • Patent number: 11598888
    Abstract: A method of measuring an environmental contaminant includes the steps of dividing a target environment into a plurality of spaces, placing a monitor in each space, uploading device data from each monitor, and processing the device data to determine a level of environmental contamination within each space. Each monitor is configured to measure a level of an environmental contaminant within the space for a sample period. A radon monitor includes a radon sensor configured to detect radon decay events, an environmental sensor configured to measure an ambient condition of air surrounding the radon sensor, a processor configured to record device data including a count of a number of radon decay events and the ambient conditions, and a communication means for transmitting the device data. A system includes a plurality of monitors, a receiving device for receive device data from each monitor, and a cloud computer to process the device data.
    Type: Grant
    Filed: October 29, 2021
    Date of Patent: March 7, 2023
    Assignee: PROTECT, LLC
    Inventors: Kyle Hoylman, Chris Bonniwell, Christopher Ferguson
  • Patent number: 11599990
    Abstract: A deterioration determination method in a deterioration determination device configured to determine deterioration of an X-ray detector of an industrial X-ray imaging apparatus, the deterioration determination method including: an acquisition step of acquiring a captured image generated by the X-ray detector; a statistical processing step of generating statistical processing information of the captured image; and a determination step of determining whether or not the X-ray detector has been deteriorated, based on the statistical processing information.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: March 7, 2023
    Assignee: Shimadzu Corporation
    Inventors: Bunta Matsuhana, Goro Kambe
  • Patent number: 11594653
    Abstract: The present disclosure provides a flat panel detector and a medical image detection device. The flat panel detector includes a base substrate, wherein the base substrate is divided into a plurality of detection units, each detection unit includes a first absorbing layer and a second absorbing layer, both of which are arranged on the base substrate in a laminating manner, the second absorbing layer is located on one side, away from the base substrate, of the first absorbing layer, and an energy level of rays absorbed by the second absorbing layer is smaller than that of rays absorbed by the first absorbing layer; a voltage supply electrode structure; and an output circuit, electrically connected to the voltage supply electrode structure and configured to output a first detection signal of the first absorbing layer and a second detection signal of the second absorbing layer.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: February 28, 2023
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Fanli Meng, Jiangbo Chen, Zeyuan Li, Yao Lu, Ning Dang
  • Patent number: 11585953
    Abstract: The present disclosure may provide a detector module of an imaging apparatus. The detector module may include a detector assembly configured to detect a signal associated with an object; a cover assembly configured to accommodate the detector assembly; and at least one cooling assembly operably coupled to the cover assembly. The at least one cooling assembly may be configured to cool the detector assembly by providing a cooling medium to the cover assembly.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: February 21, 2023
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Ting Ye, Yajun Wu
  • Patent number: 11585767
    Abstract: Systems and methods for non-destructive testing by computed tomography are provided. The system can include a stationary radiation source, a stage, and a plurality of stationary radiation detectors. The source can be configured to emit, from a focal point, a beam of penetrating radiation having a three-dimensional geometry and to direct the beam in a path incident upon a target. The stationary radiation source can be positioned with respect to the plurality of stationary radiation detectors and the stage such that, a first plurality of beam segment paths is defined between the focal point and respective sensing faces of the plurality of radiation detectors and at least one second beam segment path is defined between the focal point and a predetermined gap.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: February 21, 2023
    Assignee: GE Sensing & Inspection Technologies GmbH
    Inventors: Eberhard Neuser, Alex Sawatzky, Nils Rothe, Alexander Suppes
  • Patent number: 11585278
    Abstract: A method of determining one or more fuel characteristics of an aviation fuel for powering a gas turbine engine of an aircraft includes: measuring one or more trace substance parameters of the fuel, the one or more trace substance parameters each associated with a respective trace substance in the fuel; and determining one or more fuel characteristics of the fuel based on the one or more trace substance parameters. Further, a fuel characteristic determination system, a method of operating an aircraft, and an aircraft.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: February 21, 2023
    Assignee: ROLLS-ROYCE plc
    Inventors: Peter Swann, David M Beaven, Craig W Bemment, Alastair G Hobday, Benjamin J Keeler, Christopher P Madden, Martin K Yates
  • Patent number: 11583699
    Abstract: The present application provides an initial, or first, packed arc setup to be compared with predefined arc setup constraints. These predefined arc setup constraints constrain at least one or more of the number of patient table angles per target volume, the number of times the gantry moves along one arc per table angle, the sum of gantry span per metastasis over all arcs, and the minimum table span. Based on the result of the comparison between the first packed arc setup with the predefined arc setup constraints, a second arc setup is automatically suggested. The automatically suggested second arc setup may then be compared with the first arc setup by calculating a score for both setups. Several iterations of such a method can be carried out based on the comparison between an arc setup and the following, subsequent arc setup in the iteration.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 21, 2023
    Assignee: Brainlab AG
    Inventors: Cornelis Kamerling, Stefan Schell
  • Patent number: 11576629
    Abstract: A method for adaptive coincidence data processing is provided. The method includes detecting positron annihilation events with a detector array of a positron emission tomography (PET) scanner, wherein the PET scanner includes multiple detector rings disposed along a longitudinal axis of the PET scanner, and each detector ring includes multiple detectors. The method also includes, within a given time period, dynamically adjusting a number of positron annihilation events accepted and transmitted to acquisition circuitry for processing utilizing a numerical difference in detector rings along the longitudinal axis between a first detector and a second detector detecting respective annihilation photons from a positron annihilation event.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: February 14, 2023
    Assignee: GE Precision Healthcare LLC
    Inventor: Floribertus Philippus Martinus Heukensfeldt Jansen
  • Patent number: 11581361
    Abstract: Disclosed herein is a method comprising: forming a first electrically conductive layer on a first surface of a substrate of semiconductor, wherein the first electrically conductive layer is in electrical contact with the semiconductor; bonding, at the first electrically conductive layer, a support wafer to the substrate of semiconductor; thinning the substrate of semiconductor.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: February 14, 2023
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 11579319
    Abstract: A nuclear radiation detector is disclosed. The detector includes a housing including therein: a scintillator; and a multi-pixel optical sensor positioned, relative to the scintillator, to receive photons emitted by the scintillator in response to interactions with nuclear radiation. The housing isolates the scintillator and the multi-pixel optical sensor from external light. The detector includes one or more processors operably connectable to the multi-pixel optical sensor; and one or more data stores coupled to the processors having instructions stored thereon which cause the processors to perform operations.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: February 14, 2023
    Assignee: X Development LLC
    Inventor: Thomas Peter Hunt