Patents Examined by Lawrence D Hohenbrink, Jr.
  • Patent number: 11957588
    Abstract: A mould adapted to be introduced into a joint of a human patient for resurfacing at least one carrying contacting surface of said joint is provided. The mould is adapted to receive material for resurfacing at least one carrying contacting surface of said joint. The mould is further adapted to be resorbed by the human body or melt after having served its purpose.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: April 16, 2024
    Inventor: Peter Forsell
  • Patent number: 11958234
    Abstract: Provided are a three-dimensional object inkjet printing method, a printing apparatus and a computer-readable storage medium. Where the three-dimensional object inkjet printing method includes: forming an adhesion support portion (2) on a support platform (1) first, and then forming an elastic support portion (3) on the adhesion support portion, the elastic support portion being embedded with a first elastic portion (31), and finally, forming a target object (4) by printing layer by layer on the elastic support portion. Therefore, a possibility of affecting a printing precision due to a separation of a material layer and the support platform is reduced, and a possibility of cracking in a bottom of the support when subjected to an impact force during an inkjet printing process is reduced at the same time, and a printing reliability is improved.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: April 16, 2024
    Assignee: ZHUHAI SAILNER 3D TECHNOLOGY CO., LTD.
    Inventor: Dongqing Xiang
  • Patent number: 11938692
    Abstract: A soft material extruder including a housing having a cavity, an inlet configured to receive a material and an outlet. The extruder also includes a first intermeshed gear pair positioned in the cavity proximate the inlet, the first intermeshed gear pair that when driven is configured to draw material from the inlet into the cavity, a heating element positioned in the cavity proximate the outlet, wherein the heating element is configured to melt material in the vicinity of the outlet and a second intermeshed gear pair positioned in the cavity proximate the outlet, the second intermeshed gear pair forming a gear pump that when driven is configured to push molten material towards the outlet so that molten material is expelled from the outlet.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: March 26, 2024
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventor: Nicholas Hockings
  • Patent number: 11931806
    Abstract: In one example, a memory having instructions thereon that when executed cause a 3D printing system to repeatedly form each of multiple successive layers of powdered build material on a platform and apply a functional agent to build material in each layer, create a pressure difference across a thickness of build material on the platform, and increase the pressure difference over an extent of build material on the platform as the build material on the platform gets thicker.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: March 19, 2024
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael Gabriel Monroe, Pedro Ros Zuazua
  • Patent number: 11926102
    Abstract: A method of controlling a three-dimensional (3D) bioprinter includes a nozzle end aligning operation (S100) that includes an operation (a) in which a nozzle end alignment sensor is installed at a predetermined position on a bed in a printing chamber and a sensing point of the nozzle end alignment sensor is positioned at an origin position of the bed, an operation (b) in which the bed is moved toward one side in an X-axis direction and the sensing point of the nozzle end alignment sensor is positioned under a nozzle of a first print module, an operation (c) in which the first print module is moved downward and a Z value of a nozzle end of the first print module is measured, an operation (d) in which the first print module is positioned at an original position and the bed is moved toward the other side in the X-axis direction to position the sensing point of the nozzle end alignment sensor under a syringe, which is disposed at a printing position, of a second print module, an operation (e) in which the second p
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: March 12, 2024
    Assignee: ROKIT HEALTHCARE INC.
    Inventor: Seok Hwan You
  • Patent number: 11919237
    Abstract: A three-dimensional (3D) bioprinter includes: a case, a printing chamber surrounded by wall surfaces, a moving unit including a horizontal moving unit installed in a space under a bottom surface of the printing chamber and a vertical moving unit installed outside a side surface of the printing chamber, a bed disposed above a bottom surface opening of the bottom surface of the printing chamber, a first bellows which covers a space between the bed and an inner circumferential surface of the bottom surface opening, a first print module provided in the printing chamber and installed to be vertically movable by the vertical moving unit in a Z-axis direction, a second print module provided at one side of the first print module in the printing chamber and installed to be vertically movable by the vertical moving unit in the Z-axis direction, and a controller.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: March 5, 2024
    Assignee: ROKIT HEALTHCARE INC.
    Inventor: Seok Hwan You
  • Patent number: 11919224
    Abstract: A system for additive metal manufacturing, including a deposition mechanism, a translation mechanism mounting the deposition mechanism to the working volume, and a stage. A method for additive metal manufacturing including: selectively depositing a material carrier within the working volume; removing an additive from the material carrier; and treating the resultant material.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: March 5, 2024
    Assignee: Mantle Inc.
    Inventors: Stephen T. Connor, Theodore C. Sorom, James R. Groves
  • Patent number: 11919268
    Abstract: A rotary press comprising at least one pressing station having each of a vertically-adjustable upper and lower pressure roller, which are mounted by axes in the at least one pressing station. Cam-guided upper punches having punch heads are fed to the upper pressure roller by a control cam and a pull-up cam raises the upper punches to a highest point above a filling device. A vertically-adjustable safety cam is designed to be vertically adjustable in relation to the upper pressure roller. The rotary press may comprise a preliminary pressure cam, which is integrated in a guide block.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: March 5, 2024
    Assignee: Korsch AG
    Inventors: Michael Matthes, Wolfgang Korsch, Stephan Mies
  • Patent number: 11911961
    Abstract: An additive manufacturing device for an aerospace truss includes a raw material input unit, a longitudinal beam forming unit, a longitudinal beam traction unit, a cross beam forming unit and a truss support unit. The raw material input unit stores pre-impregnated wires and pre-impregnated tapes, and a motor drives rollers to convey the pre-impregnated wires and the pre-impregnated tapes forward; the longitudinal beam forming unit is composed of three sets of forming molds, and the pre-impregnated tapes form V-shaped longitudinal beams through heating molds; a stepper motor used in the longitudinal beam traction unit drives three sets of roller traction devices through steering gears to pull formed longitudinal beams; the cross beam forming unit is composed of a motion module and a printing module, and a truss cross beam is printed through a 3D printing method of molten deposition.
    Type: Grant
    Filed: September 6, 2023
    Date of Patent: February 27, 2024
    Assignee: NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS
    Inventors: Zhongde Shan, Congze Fan, Jinghua Zheng, Wenzhe Song, Yiwei Chen, Kai Liu
  • Patent number: 11897720
    Abstract: A filament spool dry box includes a shell, a dehumidifier and a sleeve component. The shell includes a hanging structure configured to allow a bracket to be disposed in for hanging the shell. The dehumidifier is disposed inside the shell. The sleeve component is rotatably disposed inside the shell and configured to allow a filament to be disposed on. A central axis of the hanging structure is offset from and above a central axis of the sleeve component. The filament spool dry box can isolate the filament from an external environment outside the shell and remove moisture from an internal environment inside the shell by the dehumidifier. Therefore, the filament spool dry box can prevent the filament inside the shell from absorbing moisture. Furthermore, the filament spool dry box can replace disposable spools in the prior art and be energy saving and environmental protecting.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: February 13, 2024
    Inventor: Chung-Wu Ting
  • Patent number: 11897205
    Abstract: Systems and methods for fabricating a dental aligner are provided. The system includes a computing system to receive and prepare a digital model of a dental aligner by adding one or more support structures to the digital model. The system includes a fabrication system to manufacture the dental aligner with the one or more support structures. The system includes a laser system to receive the fabricated dental aligner, orient the dental aligner relative to the laser system, and laser cut an interface between the support structures and the dental aligner to remove the one or more support structures from the dental aligner.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: February 13, 2024
    Assignee: SDC U.S. SmilePay SPV
    Inventors: Tim Wucher, John Dargis, Eric Wagnon, Drew Marschner, Charlotte Xia, Justin Kreil
  • Patent number: 11884022
    Abstract: Methods and systems (100) of printing a 3D object (101) comprising: depositing material, layer by layer, via printing heads (72) comprising one or more nozzle arrays; and activating each of said printing heads (72) to dispense a building material (50) at least once within a specified period of time during printing.
    Type: Grant
    Filed: December 25, 2019
    Date of Patent: January 30, 2024
    Assignee: STRATASYS LTD.
    Inventors: Shai Sultan, Shmuel Rubin
  • Patent number: 11884009
    Abstract: The disclosure relates to a method or a platform for hydrogel-based 3D fabrication, wherein the hydrogel is patterned with a programmable femtosecond light sheet with a power density of 0.1 to 100 TW/cm2.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: January 30, 2024
    Assignees: The Chinese University of Hong Kong, Carnegie Mellon University
    Inventors: Shih-Chi Chen, Songyun Gu, Fei Han, Yongxin Zhao, Aleksandra Klimas
  • Patent number: 11884010
    Abstract: A printing method employs a piece of equipment comprising an energy-delivering exciter that is orientable to produce a punctiform interaction with at least one ink that possibly contains non-uniformities and that is deposited on a printing medium including a transparent interaction area, in order to cause the transfer of a targeted portion of the ink to a receiver. The method includes a step of generating a wetting film at least partially covering the transparent interaction area, followed by a step of depositing the ink on the surface of the wetting film and transferring steps.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: January 30, 2024
    Assignee: POIETIS
    Inventors: Dan Soto, Fabien Guillemot, Bertrand Viellerobe, Aude Clapies
  • Patent number: 11865752
    Abstract: A plasticizing device includes a passage defining section that is coupled to a hopper which stores a material and that defines a supply passage to which the material is supplied from the hopper, a plasticizing section that includes an introduction portion which communicates with the supply passage, and a screw, and that plasticizes the material supplied from the introduction portion by rotation of the screw to form a molten material, and a material detection section that detects the presence or absence of the material in the supply passage.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: January 9, 2024
    Inventor: Hidenobu Maruyama
  • Patent number: 11865788
    Abstract: An additive manufacturing method includes providing a polymeric material and changing a cooling rate of the polymeric material by adding a second material to the polymeric material. The additive manufacturing method also includes providing the polymeric material and the added second material to an additive manufacturing apparatus and depositing the polymeric material, having the changed cooling rate, with the additive manufacturing apparatus at a deposition rate that is based at least in part on the changed cooling rate of the polymeric material.
    Type: Grant
    Filed: March 8, 2023
    Date of Patent: January 9, 2024
    Assignee: Thermwood Corporation
    Inventor: Kenneth J. Susnjara
  • Patent number: 11865778
    Abstract: The disclosure is of and includes at least an apparatus, system and method for a print head for additive manufacturing. The apparatus, system and method may include at least two proximate hobs suitable to receive and extrude therebetween a print material filament for the additive manufacturing, each of the two hobs comprising two halves, wherein each of the hob halves comprises teeth that are offset with respect to the teeth of the opposing hob half; a motor capable of imparting a rotation to at least one of the two hobs, wherein the extrusion results from the rotation; and an interface to a hot end capable of outputting the print material filament after at least partial liquification to perform the additive manufacturing.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: January 9, 2024
    Assignee: JABIL INC.
    Inventors: William MacNeish, Erik Gjovik
  • Patent number: 11865777
    Abstract: An extruder for extrusion of material, the extruder comprising a screw (110), a barrel (120), a controller, and a force sensor wherein at least a section (110b) of the screw (110) is conical and wherein at last a section (120b) of the barrel (120) is conical wherein the extruder (100) is adapted for displacing the screw (110) in an axial direction of the screw (110), such that by an axial displacement of the screw with regard to the barrel the size of a leakage gap (180) between the screw (110) and the barrel (120) is modified, wherein the extruder is adapted for actively obtaining operational characteristics and wherein the controller (160) is adapted for controlling the axial displacement of the screw (110) as a function of the operational characteristics of which at least one is an upward force of the material or an upward force on the screw.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: January 9, 2024
    Assignee: Universiteit Gent
    Inventors: Ludwig Cardon, Dagmar D'Hooge, Kim Ragaert, Willem Van de Steene, Mustafa ErkoƧ, Marcel Moerman
  • Patent number: 11850797
    Abstract: A liquefier tube for an additive manufacturing system, the liquefier tube including a body provided with a feed channel including a feeding portion having a first diameter, an outlet portion having a second diameter, the first diameter being larger than the second diameter, a transitional portion interconnecting the feeding portion and the outlet portion. The transitional portion has a monotonically decreasing third diameter from the feeding portion to the outlet portion and the third diameter as function of a longitudinal position of the feed channel in the transitional portion between the feeding portion and the outlet portion and at a transition between the transitional portion and the outlet portion is differentiable. Methods of manufacturing the liquefier tube.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: December 26, 2023
    Assignee: BOND HIGH PERFORMANCE 3D TECHNOLOGY B.V.
    Inventors: Adrianus Bruggeman, Marald Speelman, Klaas Groen, Martijn Johannes Wolbers, Koendert Hendrik Kuit, Antonie Everhard Ekkelenkamp
  • Patent number: 11850790
    Abstract: The present disclosure relates to a volumetric additive manufacturing system for forming a structure from a volume of resin using microwave energy. The system makes use of an electronic controller and at least one beam forming algorithm accessible by the electronic controller for generating information relating to an amplitude and a time delay for forming a microwave signal, where the microwave signal will be used in irradiating a build volume, and where the build volume is formed by the volume of resin. A microwave signal generating subsystem is included which is responsive to the information generated by the beam forming algorithm, and which generates a microwave signal using the amplitude and the time delay determined by the beam forming algorithm. An antenna is used to receive the microwave signal and project the microwave signal as a microwave beam, in accordance with the amplitude and time delay, into the build volume to form the structure.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: December 26, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Saptarshi Mukherjee, Tammy Chang, Joseph W. Tringe