Patents Examined by Matthew Schall
  • Patent number: 9795481
    Abstract: An epicardial clip for reshaping the annulus of the mitral valve of a heart includes a curved member having an anterior segment configured to be positioned in the transverse sinus of the heart, a posterior segment configured to be positioned on the posterior side of the heart, such as on or inferior to the atrioventricular groove, and a lateral segment extending between the anterior segment and the posterior segment. The lateral segment includes a curve such that the first end of the member is positioned at or above the plane of the mitral valve and the second end of the member is positioned at or below the plane of the mitral valve.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: October 24, 2017
    Assignee: Maquet Cardiovascular LLC
    Inventors: Peter Tachi Callas, Pierluca Lombardi, Michael C. Stewart, Liming Lau, Mark S. Juravic, Evan Anderson, Joe Lamberti, Albert K. Chin, Tammy Wang
  • Patent number: 9795487
    Abstract: Systems and methods for providing deeper knee flexion capabilities, more physiologic load bearing, and improved patellar tracking for knee prosthesis patients. In some instances, such systems and methods include a knee prosthesis that includes a femoral component for replacing at least a portion of a distal end of a femur. While the femoral component can include any feature, in some cases, it includes a condylar surface configured to articulate with an articular surface of a tibia. In some cases, the femoral component also includes a proximal extension that extends from a proximal, posterior portion of the condylar surface. In such cases, the proximal extension provides the femoral component with a concave articulation surface that is configured to articulate against a portion of the tibia. Other implementations are also described.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: October 24, 2017
    Inventors: Kent M. Samuelson, Conner E. Samuelson
  • Patent number: 9775933
    Abstract: The invention is an improved biocompatible surface for a variety of medical purposes. The biocompatible surface employs a unique tight microstructure that demonstrates enhanced cellular response in the body, particularly when placed in contact with blood. As a blood contact surface, the present invention can be beneficially employed in a wide variety of implantable devices and in many other devices and equipment that come in contact with blood.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: October 3, 2017
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Keith A. Knisley, Vishnu T. Marla, Rachel Radspinner, Paul A. Silvagni, Jason J. Strid, Michael J. Vonesh
  • Patent number: 9750852
    Abstract: Bioabsorbable polymer scaffolds with coatings are disclosed that include immobilized antithrombotic agents on the scaffolds or in or on the coatings. The agents act synergistically with antiproliferative agents released from coatings by providing hemocompatibility during and without interfering with antiproliferative agent release. Methods of modifying scaffolds and coatings with the antithrombotic agents are disclosed.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: September 5, 2017
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Derek Mortisen, Yunbing Wang
  • Patent number: 9737400
    Abstract: A transcatheter, percutaneously implantable, prosthetic heart valve is provided that comprises a lattice frame and two or more integrated cusp and leaflet folded structures attached to the lattice frame. The two or more integrated cusp and leaflet folded structures each comprise a flat sheet of biocompatible membrane that is folded to include a substantially conical shape according to a flat folding pattern. The substantially conical shape is further formed by joining apposing sides of the substantially conical shape along a seam. The two or more integrated cusp and leaflet folded structures are each attached along their respective seams to the lattice frame in a direction substantially parallel to an axis of the lattice frame. Embodiments of valves described herein have application within the entire vascular system.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: August 22, 2017
    Assignee: COLIBRI HEART VALVE LLC
    Inventors: R. David Fish, Eduaro Induni, David Paniagua
  • Patent number: 9737402
    Abstract: The invention relates to a biological or artificial valve prosthesis (4, 5) for use in the human or animal body for replacement of an organ valve or a vessel valve, in particular a cardiac valve prosthesis or venous valve prosthesis, with a stent (8) or without a stent, with a supporting valve framework, with at least one valve (7) and with at least one conductor loop (2) that forms the inductance of an electrical resonance circuit. In order to provide a simple and inexpensive valve prosthesis that can be viewed in the MR imaging technique and is also easy to implant, the invention proposes that the at least one conductor loop (2) forms the valve framework and/or the valve (7) or supporting areas of the valve framework and/or supporting areas of the valve (7).
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: August 22, 2017
    Assignee: VUEKLAR CARDIOVASCULAR LTD.
    Inventors: Andreas Melzer, Erwin Immel
  • Patent number: 9737397
    Abstract: Apparatus and methods are provided for use with a mitral valve of a heart of a subject. The apparatus includes a P1-anchor, a P2-anchor, and a P3-anchor, that are anchored to tissue in a vicinity of, respectively, P1, P2 and P3 segments of a posterior leaflet of the mitral valve, a tether being fixedly coupled to the P2-anchor, and slidably coupled to the P1 and P3 anchors. A cardiac-site anchor anchors the tether to an anchoring location that is at a cardiac site that is anterior and inferior to the posterior leaflet. Other embodiments are also described.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: August 22, 2017
    Assignee: Medtronic Ventor Technologies, LTD.
    Inventors: Yosi Tuval, Ilia Hariton
  • Patent number: 9730792
    Abstract: A heart valve stent having a section with a heart valve implant and several proximally disposed tissue anchors, also comprising a plurality of anchoring threats, each with a proximate end fastened to the stent or valve and a distal end attached to tissue within a heart chamber to provide tension between the heart chamber tissue and the stent.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: August 15, 2017
    Inventors: Georg Lutter, Lucian Lozonschi
  • Patent number: 9731055
    Abstract: The present invention relates to an implantable device for improving the pump function of the heart of a human patient by applying an external force on the heart muscle. The implantable device comprises at least one implantable pump device comprising: A fluid, A first reservoir having a first volume and at least one movable wall portion, for varying said first volume, and A second reservoir being in fluid connection with said first reservoir. Wherein said implantable pump device is adapted to allow free flow of fluid between said first reservoir and said second reservoir, and wherein said first reservoir, said second reservoir and said fluid connection forms a fully implantable closed pump device, and wherein said fully implantable closed pump device is adapted to transfer force from said first reservoir to said second reservoir.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: August 15, 2017
    Inventor: Peter Forsell
  • Patent number: 9724215
    Abstract: A stent comprises a plurality of undulating circumferential portions, each circumferential portion comprising alternating peaks and valleys; and a plurality of longitudinally extending portions connecting the plurality of undulating circumferential portions. Each of the plurality of longitudinally extending portions contains a first longitudinally extending strut and a second longitudinally extending strut circumferentially offset with respect to the first longitudinally extending strut. The first longitudinally extending strut and the second longitudinally extending strut are interconnected by a connecting portion. Circumferentially adjacent first longitudinally extending struts in a pair of circumferentially adjacent longitudinally extending portions are circumferentially spaced at a first distance and circumferentially adjacent second longitudinally extending struts in the pair of circumferentially adjacent longitudinally extending portions are circumferentially spaced at a second distance.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 8, 2017
    Assignee: evYsio Medical Devices ULC
    Inventors: Jonathan G. Tippett, Martina Wan, Ian McDougall
  • Patent number: 9724499
    Abstract: A differential pressure regulating device is provided for controlling in-vivo pressure in a body, and in particularly in a heart. The device may include a shunt being positioned between two or more lumens in a body, to enable fluids to flow between the lumens, and an adjustable flow regulation mechanism being configured to selectively cover an opening of the shunt, to regulate the flow of fluid through the shunt in relation to a pressure difference between the body lumens. In some embodiments a control mechanism coupled to the adjustable flow regulation mechanism may be provided, to remotely activate the adjustable flow regulation mechanism.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: August 8, 2017
    Assignee: V-Wave Ltd.
    Inventors: Dan Rottenberg, Ori Braun, Avraham Aba Sakay, Ascher Shmulewitz, Yoram Rozy, Gad Keren
  • Patent number: 9707075
    Abstract: The present invention relates to a stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient. Specifically, the present invention relates to an expandable stent for an endoprosthesis used in the treatment of a narrowing of a cardiac valve and/or a cardiac valve insufficiency. So as to ensure that no longitudinal displacement of a valvular prosthesis fastened to a stent will occur relative the stent in the implanted state of the stent, even given the peristaltic motion of the heart, the stent according to the invention comprises at least one fastening portion via which the valvular prosthesis is connectable to the stent. The stent further comprises positioning arches and retaining arches, whereby at least one positioning arch is connected to at least one retaining arch via a first connecting web.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: July 18, 2017
    Assignee: JENAVALVE TECHNOLOGY, INC.
    Inventors: Helmut Straubinger, Johannes Jung
  • Patent number: 9687336
    Abstract: A stent for use in a medical procedure having opposing sets of curved apices, where the curved section of one set of apices has a radius of curvature that is greater than the curved section of the other set of apices. One or more such stents may be attached to a graft material for use in endovascular treatment of, for example, aneurysm, thoracic dissection, or other body vessel condition.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: June 27, 2017
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: David Brocker, William K. Dierking, Alan R. Leewood, Timothy A. M. Chuter, Blayne A. Roeder, Steven J. Charlebois, Richard A. Swift, Sharath Gopalakrishnamurthy, Matthew S. Huser
  • Patent number: 9682180
    Abstract: A ventricular assist system and a method of implanting the system are disclosed. The system can have a pump, an inflow conduit, an outflow conduit, attachment ring, ring clamp, and a valvular structure. The attachment ring can be attached to the apex of the heart. The valvular structure can have a flexible, one-way valve in a rigid housing. The inflow conduit can be passed through the valvular structure and the attachment ring into a beating heart with minimal loss of blood. Devices such as slitting tool, coring knife, and/or C-clamp and use of the devices can form part of the system and method for implanting the ventricular assist device.
    Type: Grant
    Filed: November 14, 2010
    Date of Patent: June 20, 2017
    Assignee: THORATEC CORPORATION
    Inventors: Carine Hoarau, John Duc Nguyen, Steven H. Reichenbach, Ruth Eleanor Costa, James Badia, Donald Lee Hannula
  • Patent number: 9668862
    Abstract: The invention relates to a biological or artificial valve prosthesis (4, 5) for use in the human or animal body for replacement of an organ valve or a vessel valve, in particular a cardiac valve prosthesis or venous valve prosthesis, with a stent (8) or without a stent, with a supporting valve framework, with at least one valve (7) and with at least one conductor loop (2) that forms the inductance of an electrical resonance circuit. In order to provide a simple and inexpensive valve prosthesis that can be viewed in the MR imaging technique and is also easy to implant, the invention proposes that the at least one conductor loop (2) forms the valve framework and/or the valve (7) or supporting areas of the valve framework and/or supporting areas of the valve (7).
    Type: Grant
    Filed: August 24, 2015
    Date of Patent: June 6, 2017
    Assignee: VUEKLAR CARDIOVASCULAR LTD.
    Inventors: Andreas Melzer, Erwin Immel
  • Patent number: 9662234
    Abstract: An intra-vascular aneurysm-treatment stent and a method for lowering pressure within an aneurysm bubble in a blood vessel. A stent coil is insertable into a blood vessel, the coil made of a material sufficiently flexible to move around curves, loops, and corners in the blood vessel. Selected portions of the stent coil, in cross-section, have substantially convex outer surfaces, and either substantially flat, or substantially concave, inner surfaces, plus upstream leading edges and downstream trailing edges. The stent coil is positioned in the blood vessel with selected stent coil portions proximate an opening into either a saccular aneurysm or a fusiform aneurysm. Blood in the lumen of the blood vessel flows past the leading edges and both over the convex outer surfaces, and under the either flat or concave inner surfaces. A portion of the blood inside the aneurysm becomes entrained with the blood flowing over the outer surfaces.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: May 30, 2017
    Inventor: Joseph Horton
  • Patent number: 9655731
    Abstract: A cemented tibial prosthesis having a bone-contacting surface with a porous outer rim. With the bone-contacting surface seated against a resected proximal tibia, bone cement or another suitable adhesive will travel into the pores of the porous outer rim to enhance the connection between the tibial prosthesis and the tibia.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: May 23, 2017
    Assignee: Zimmer GmbH
    Inventors: Andrew J. Jukes, Rosemary E. Thompson, Jörg Zimmermann
  • Patent number: 9656010
    Abstract: A blood pump controller includes a microcontroller and a communication interface. The microcontroller is configured to communicate with various types of blood pump communication modules. The microcontroller is further configured to determine, based on communication with a particular type of blood pump communication module, the particular type of blood pump communication module communicated with. The microcontroller is further configured to select, based on the determination of the particular type of blood pump communication module, control logic used to control the particular type of blood pump communication module. The microcontroller is further configured to generate, based on the selected control logic, commands for controlling the blood pump communication module. The communication interface is configured to connect the microcontroller to the particular type of blood pump communication module.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: May 23, 2017
    Assignee: TC1 LLC
    Inventor: David J. Burke
  • Patent number: 9655722
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 23, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Patent number: 9649208
    Abstract: A stent is formed from a wire having an outer member, a radiopaque core member disposed within a portion of the outer member, and an annular lumen between the radiopaque core member and the outer member. A substance is disposed in the annular lumen to be eluted through at least one opening disposed through the outer member. A plurality of radiopaque core members are disposed within portions of the outer member and are separated by lumens defined by the inner surface of the outer member. The lumens and annular lumens are in fluid communication with each other. In a method for making the stent, a composite wire including an outer member, an intermediate member, and a core member is shaped into a stent pattern and processed to remove the intermediate member and portions of the radiopaque core member, without damaging the outer member.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: May 16, 2017
    Assignee: Medtronic Vascular, Inc.
    Inventors: Ryan Bienvenu, James Mitchell, Dustin Thompson