Patents Examined by Mayla Gonzalez Ramos
  • Patent number: 11804563
    Abstract: A method for binding photovoltaic cells to a substrate, each photovoltaic cell comprising a rear face and a front face, comprises: providing the substrate, said substrate being flexible and impregnable; impregnating portions of the substrate with a crosslinkable polymer material, said portions being impregnated along the thickness of the substrate, with a view to bonding the photovoltaic cells to the substrate; bringing the rear faces of the photovoltaic cells into contact with the impregnated portions of the substrate; crosslinking the crosslinkable polymer material.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: October 31, 2023
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Anthony Barbot, Yannick Roujol, Caroline Seraine
  • Patent number: 11799040
    Abstract: A solar cell including: a substrate having front and back surfaces, the back surface includes first, second and gap regions, the first and second regions are staggered and spaced from each other in a first direction, and each gap region is provided between one first region and one second region adjacent thereto by recessing toward interior of the substrate; a first conductive layer formed over the first region; a second conductive layer formed over the second region, the second conductive layer has a conductivity type opposite to the first conductive layer; a first electrode forming electrical contact with the first conductive layer; a second electrode forming electrical contact with the second conductive layer; and a boundary region between the gap region and the first and/or second conductive layer adjacent thereto, and a line-pattern concave and convex texture structure is formed on the back surface corresponding to the boundary region.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: October 24, 2023
    Assignees: Zhejiang Jinko Solar Co., Ltd., Jinko Solar Co., Ltd.
    Inventors: Xiu Feng, Menglei Xu, Jie Yang, Xinyu Zhang
  • Patent number: 11784277
    Abstract: A method for preparing a P-type crystalline silicon rear electrode, comprising: printing an all-aluminum paste on a P-type crystalline silicon rear passivation layer, then printing a linear interlayer-glass paste on the all-aluminum paste, and finally overprinting rear silver electrodes on the linear middle layer-glass paste. In a solar cell prepared using the method, good contact with silver and aluminum is kept without causing damage to the passivation layer and compromising the conductivity. In the present invention, a complete all-aluminum back surface field can be formed, leading to an improved field passivation property of an electrode region and reduced carrier recombination.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: October 10, 2023
    Assignee: NANTONG T-SUN NEW ENERGY CO., LTD.
    Inventors: Peng Zhu, Guizhong Yang, Yanmei Chen, Yeqing Wang
  • Patent number: 11784268
    Abstract: A photovoltaic module includes a transparent first layer forming the front side of the photovoltaic module; a plurality of photovoltaic cells placed side-by-side and electrically connected; a polymer encapsulating assembly able to encapsulate the plurality of photovoltaic cells between a lower portion and an upper portion; a second layer made of a composite material based on polymer resin and on fibres, the encapsulating assembly and the photovoltaic cells being located between the first and second layers, at least the first and second layers defining edges of the photovoltaic module, the plurality of photovoltaic cells being spaced apart by a non-zero distance DA from at least one edge of the photovoltaic module; the photovoltaic module further comprises a third layer made of a composite material based on polymer resin and on fibres, the layer being located below the plurality of photovoltaic cells and above the lower portion of the encapsulating assembly and forming at least one peripheral strip extending f
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: October 10, 2023
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, Thales, Concept Composites Auvergne 2CA
    Inventors: Julien Gaume, Rodolphe Chaix, Jean-Baptiste Billard, Thomas Guerin, Pierre Ruols
  • Patent number: 11784272
    Abstract: A multijunction solar cell including a substrate and a top (or light-facing) solar subcell having an emitter layer, a base layer, and a window layer adjacent to the emitter layer, the window layer composed of a material that is optically transparent, has a band gap of greater than 2.6 eV, and includes an appropriately arranged multilayer antireflection coating on the top surface thereof.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: October 10, 2023
    Assignee: SolAero Technologies Corp.
    Inventors: Daniel Derkacs, Andrew Colin Espenlaub
  • Patent number: 11784273
    Abstract: A multijunction solar cell comprising a first solar subcell having a first band gap; a second solar subcell disposed adjacent to said first solar subcell and including an emitter layer, and a base layer having a second band gap less than the first band gap, and being lattice mismatched with the upper first solar subcell, and an intermediate layer directly adjacent to and disposed between first and the second solar subcells and compositionally graded to lattice match the first solar subcell on one side and the second solar subcell on the other side, and arranged so that light can enter and pass through the first solar subcell and at least a portion of which can be reflected back into the first solar subcell by the intermediate layer, and is composed of a plurality of layers of materials with discontinuities in their respective indices of refraction.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: October 10, 2023
    Assignee: Sol Aero Technologies Corp.
    Inventors: Daniel Derkacs, John Hart, Zachary Bittner, Andrew Espenlaub
  • Patent number: 11769848
    Abstract: A method for manufacturing a heterojunction structure based solar cell includes preparing an n-type or p-type semiconductor substrate; forming a p-type or n-type non-oxide semiconductor material layer on the n-type or p-type semiconductor substrate to form a p-n junction; forming a transition metal oxide film on the non-oxide semiconductor material layer; and forming a front electrode and a rear electrode. The transition metal oxide layer protects the surface of the non-oxide semiconductor and improves charge extraction.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: September 26, 2023
    Assignee: RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventor: Jaehyeong Lee
  • Patent number: 11764235
    Abstract: The present invention relates to a colored tandem solar cell module, and more particularly, a high-efficiency thin-film colored tandem solar cell module which does not require separate photocurrent matching, implements a color without a separate color filter, and generates power with high efficiency. According to the present invention, it is possible to provide a colored tandem solar cell module including solar cells, which each include a bottom electrode having an inverse diode structure formed by sequentially stacking a first electrode, a first semiconductor layer, a second semiconductor layer, and a second electrode on a substrate, a light absorption layer formed on the bottom electrode, and a top electrode formed on the light absorption layer, thereby eliminating the need for photocurrent matching, implementing a color without a separate color filter, and improving efficiency.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: September 19, 2023
    Assignee: Korea Institute of Science and Technology
    Inventors: Hyeong Geun Yu, Jeung Hyun Jeong, Gee Yeong Kim, Yoon Hee Jang
  • Patent number: 11757057
    Abstract: A colored solar module is provided, in which at least one solar cell is embedded in an encapsulation layer, and a transparent plate is disposed on the encapsulation layer. The transparent plate has a single coating layer containing quartz for attaching onto the encapsulation layer so as to reflect the desired color light.
    Type: Grant
    Filed: April 28, 2022
    Date of Patent: September 12, 2023
    Inventor: Ting-Hui Huang
  • Patent number: 11758810
    Abstract: A photoelectric device is disclosed. The photoelectric device includes a first electrode, a second electrode, and an electrolyte disposed between the first electrode and the second electrode. The second electrode includes a transparent layer for allowing light to penetrate into the second electrode, an electron transport layer coupled to the transparent layer, and a genetically hybridized fluorescent silk layer as a photo-sensitizer coupled to the electron transport layer.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: September 12, 2023
    Assignee: Purdue Research Foundation
    Inventors: Jung Woo Leem, Seung Ho Choi, Young L. Kim
  • Patent number: 11749761
    Abstract: The disclosure relates to the technical field of solar cells, and provides a solar cell and a doped region structure thereof, a cell assembly, and a photovoltaic system. The doped region structure includes a first doped layer, a passivation layer, and a second doped layer that are disposed on a silicon substrate in sequence. The passivation layer is a porous structure having the first doped layer and/or the second doped layer inlaid in a hole region. The first doped layer and the second doped layer have a same doping polarity. By means of the doped region structure of the solar cell provided in the disclosure, the difficulty in production and the limitation on conversion efficiency as a result of precise requirements for the accuracy of a thickness of a conventional tunneling layer are resolved.
    Type: Grant
    Filed: October 24, 2021
    Date of Patent: September 5, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Gang Chen, Wenli Xu, Kaifu Qiu, Yongqian Wang, Xinqiang Yang
  • Patent number: 11751290
    Abstract: Disclosed herein is an autonomous solar panel for use in winter conditions. The panel includes at least one energy transfer member associated with the solar panel. A sensor is in communication with the energy transfer member. A power supply is connected to the energy transfer member. A network interconnects the energy transfer member, the sensor, and the power supply, and is configured so that when the sensor senses an accumulation of winter precipitation on the solar panel, a portion of stored power in the power supply activates the energy transfer member and the winter precipitation is removed from the solar panel.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: September 5, 2023
    Inventors: Jeffrey Scott Adler, Harold Russell Baird
  • Patent number: 11749768
    Abstract: A solar cell, a method for producing a solar cell, and a solar module are provided. The solar cell includes: an N-type substrate and a P-type emitter formed on a front surface of the substrate; a first passivation layer, a second passivation layer and a third passivation layer sequentially formed over the front surface of the substrate and in a direction away from the P-type emitter, and a passivated contact structure disposed on a rear surface of the substrate. The first passivation layer includes a first Silicon oxynitride (SiOxNy) material, where x>y. The second passivation layer includes a first silicon nitride (SimNn) material, where m>n. The third passivation layer includes a second silicon oxynitride (SiOiNj) material, where a ratio of i/j?[0.97, 7.58].
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: September 5, 2023
    Assignees: ZHEJIANG JINKO SOLAR CO., LTD., JINKO SOLAR CO., LTD.
    Inventors: Wenqi Li, Jie Yang, Xinyu Zhang, Hao Jin
  • Patent number: 11740227
    Abstract: A nanopore cell includes a conductive layer and a working electrode disposed above the conductive layer and at the bottom of a well into which an electrolyte may be contained, such that at least a portion of a top base surface area of the working electrode is exposed to the electrolyte. The nanopore cell further includes a first insulating wall disposed above the working electrode and surrounding a lower section of a well, and a second insulating wall disposed above the first insulating wall and surrounding an upper section of the well, forming an overhang above the lower section of the well. The upper section of the well includes an opening that a membrane may span across, and wherein a base surface area of the opening is smaller than the at least a portion of the top base surface area of the working electrode that is exposed to the electrolyte.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: August 29, 2023
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: John Foster, Morgan Mager
  • Patent number: 11742442
    Abstract: The present disclosure is directed to a method of processing a solar cell device. The method comprises detecting at least one inconsistency at a surface of a semiconductor substrate having a solar cell active region formed therein. A deposition pattern is determined based on the location of the at least one inconsistency. A material is selectively deposited on the substrate according to the deposition pattern.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: August 29, 2023
    Assignee: THE BOEING COMPANY
    Inventor: Eric Rehder
  • Patent number: 11742452
    Abstract: A solar cell comprising an epitaxial sequence of layers of semiconductor material thrilling at least a first and second solar subcells; a semiconductor contact layer disposed on the bottom surface of the second solar subcell; a reflective metal layer disposed below the semiconductor contact layer such that the reflectivity of the reflective metal layer is greater than 80% in the wavelength range 850 to 2000 nm, for reflecting light back into the second solar subcell.
    Type: Grant
    Filed: April 11, 2022
    Date of Patent: August 29, 2023
    Inventors: Clayton Cozzan, John Hart, Michael W. Riley, Christopher Kerestes
  • Patent number: 11742445
    Abstract: A process for the preparation of colored solar cells or colored solar cell modules containing a colored polymer film with oriented effect pigments, and colored solar cells or colored solar cell modules prepared by this process.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: August 29, 2023
    Assignee: MERCK PATENT GMBH
    Inventors: Marc Hunger, Sebastian Barth, Laurent Deloux
  • Patent number: 11735769
    Abstract: A solid state electrolyte material including a decontaminated lithium conducting ceramic oxide material including a decontaminated surface thickness. The decontaminated surface thickness is less than or equal to 5 nm. The decontaminated surface thickness may be greater than or equal to 1 nm. The decontaminated lithium conducting ceramic oxide material may be selected from the group consisting of Li7La3Zr2O12 (LLZO), Li5La3Ta2O12 (LLTO), Li6La2CaTa2O12 (LLCTO), Li6La2ANb2O12 (A is Ca or Sr), Li1+xAlxGe2-x(PO4)3 (LAGP), Li14Al0.4(Ge2-xTix)1.6(PO4)3 (LAGTP), perovskite Li3xLa2/3-xTiO3 (LLTO), Li0.8La0.6Zr2(PO4)3 (LLZP), Li1+xTi2-xAlx(PO4)3 (LTAP), Li1+x+yTi2-xAlxSiy(PO4)3-y (LTASP), LiTixZr2-x(PO4)3 (LTZP), Li2Nd3TeSbO12 and mixtures thereof.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: August 22, 2023
    Assignee: Robert Bosch GmbH
    Inventors: Saravanan Kuppan, Katherine Harry, Michael Metzger, Nathan Craig, Jake Christensen
  • Patent number: 11730047
    Abstract: A new type of charge transport layer based on organometal halide perovskite for highly efficient organic light emitting diodes (OLEDs) is demonstrated. By solution processing of halide perovskite precursors, smooth essentially pure perovskite thin films may be prepared with high transparency and conductivity. Solution processed multilayer OLED with this perovskite-based hole transport layer outperforms a device with a PEDOT:PSS layer.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: August 15, 2023
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Biwu Ma, Yu Tian
  • Patent number: 11728454
    Abstract: A method for soldering a solar cell, includes: placing a plurality of back contact cells on a soldering platform, where back surfaces of the back contact cells face away from the soldering platform, and electrodes corresponding to two adjacent back contact cells have opposite polarities in a connection direction of a plurality of to-be-connected ribbons; placing the plurality of to-be-connected ribbons on the electrodes of the plurality of back contact cells by using a first clamping portion, a second clamping portion, and a plurality of third clamping portions, where the first clamping portion, the second clamping portion, and the plurality of third clamping portions respectively correspond to head ends, tail ends, and middle portions of the plurality of ribbons; and heating the plurality of ribbons by using a heater to connect the plurality of ribbons to the plurality of back contact cells.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: August 15, 2023
    Assignee: SOLARLAB AIKO EUROPE GMBH
    Inventors: Yongqian Wang, Ning Zhang, Wenli Xu, Gang Wang, Gang Chen