Patents Examined by Michael M Trinh
  • Patent number: 11984358
    Abstract: Exemplary methods of producing a semiconductor substrate may include plating a metal within a plurality of vias on the semiconductor substrate. A target average fill thickness of the metal within the plurality of vias may be between about a thickness equal to an average via radius of the plurality of vias and a thickness twice the average via radius of the plurality of vias. At least one via of the plurality of vias may be filled to a height below the target average fill thickness of the metal. The methods may include heating the metal to cause reflow of the metal within each via of the plurality of vias. The reflow may adjust the metal within the at least one via to increase in height towards the target average fill thickness.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: May 14, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Paul McHugh, Kwan Wook Roh, Gregory J. Wilson
  • Patent number: 11984459
    Abstract: An array substrate and an OLED display panel are provided. The array substrate includes a base substrate, a first film layer set and a second film layer set. A bending area of the array substrate has a first trench throughout the first film layer set and a second trench throughout the second film layer set. The first film layer set close to the second film layer set has a blocking part having an etching opening corresponding to the first trench. The etching opening is throughout the blocking part. A bottom of the etching opening connects to a top of the first trench. A bottom of the second trench connects to a top of the blocking part.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: May 14, 2024
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Chao Liang, Liang Ma, Xuyang Liu
  • Patent number: 11978671
    Abstract: A process can be used to allow processing of thin layers of a workpiece including dies. The workpiece can include a base substrate and a plurality of layers overlying the base substrate. The process can include forming a polymer support layer over the plurality of layers; thinning or removing the base substrate within a component region of the workpiece, wherein the component region includes an electronic device; and singulating the workpiece into a plurality of dies after thinning or removing the base substrate. In another aspect, an electronic device can be formed using such process. In an embodiment, the workpiece may have a size corresponding to a semiconductor wafer to allow wafer-level, as opposed to die-level, processing.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: May 7, 2024
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 11973031
    Abstract: A memory device includes an array of memory cells and a plurality of bit-lines with each bit-line connected to a respective set of memory cells of the array of memory cells. The memory device includes a memory subsystem having first and second memory circuits. Each first memory circuit can be disposed laterally adjacent to a second memory circuit. Each first memory circuit includes a first bit-line connection and each second memory circuit including a second bit-line connection, the first and second bit-line connections can connect to respective bit-lines. Each first bit-line connection is disposed on a first bit-line connection line of the memory subsystem and each second bit-line connection is disposed on a second bit-line connection line of the memory subsystem, and the second bit-line connection line can be offset from the first bit-line connection line by a predetermined distance that is greater than zero.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: April 30, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Michael A. Smith, Haitao Liu, Vladimir Mikhalev
  • Patent number: 11955370
    Abstract: A system and methods of forming a dielectric material within a trench are described herein. In an embodiment of the method, the method includes introducing a first precursor into a trench of a dielectric layer, such that portions of the first precursor react with the dielectric layer and attach on sidewalls of the trench. The method further includes partially etching portions of the first precursor on the sidewalls of the trench to expose upper portions of the sidewalls of the trench. The method further includes introducing a second precursor into the trench, such that portions of the second precursor react with the remaining portions of the first precursor to form the dielectric material at the bottom of the trench.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 9, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bo-Cyuan Lu, Ting-Gang Chen, Sung-En Lin, Chunyao Wang, Yung-Cheng Lu, Chi On Chui, Tai-Chun Huang, Chieh-Ping Wang
  • Patent number: 11923434
    Abstract: A method is presented for forming a vertical transport field effect transistor (VTFET). The method includes forming a plurality of fins over a substrate, depositing a sacrificial material adjacent the plurality of fins, forming self-aligned spacers adjacent the plurality of fins, removing the sacrificial material to define openings under the self-aligned spacers, filling the openings with bottom spacers, depositing an interlayer dielectric (ILD) after patterning, laterally etching the substrate such that bottom surfaces of the plurality of fins are exposed, the lateral etching defining cavities within the substrate, and filling the cavities with an epitaxial material such that epitaxial regions are defined each having a symmetric tapered shape under a twin-fin structure. The single fin device can be formed through additional patterning and bottom epi under the single fin device that has an asymmetric tapered shape.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: March 5, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Tao Li, Ruilong Xie, Sung Dae Suk, Heng Wu
  • Patent number: 11916073
    Abstract: A complementary field effect transistor (CFET) structure including a first transistor disposed above a second transistor, a first source/drain region of the first transistor disposed above a second source/drain region of the second transistor, wherein the first source/drain region comprises a smaller cross-section than the second source/drain region, a first dielectric material disposed in contact with a bottom surface and vertical surfaces of the first source/drain region and further in contact with a vertical surface and top surface of the second source/drain region, and a second dielectric material disposed as an interlayer dielectric material encapsulating the first and second transistors.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: February 27, 2024
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Kangguo Cheng, Julien Frougier, Chanro Park
  • Patent number: 11915984
    Abstract: A method of forming an electrical connection between a buried power rail (BPR) of an unfinished complementary field effect transistor (CFET) and a source or drain epitaxial growth of a lower level of the CFET is provided. The method includes performing silicon epitaxial growth in a lower level of the CFET, adding a contact material to a portion of an exposed portion of the silicon epitaxial growth in the lower level, the exposed portion of the silicon epitaxial growth being located in a vertical slot of the unfinished CFET structure, adding a conductive material within a vertical channel, the conductive material being in contact with the added contact material and the BPR to form an electrical connection between the portion of the exposed portion of the silicon epitaxial growth and the BPR and etching back a portion of the added conductive material within the vertical channel.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: February 27, 2024
    Inventors: Xi-Wei Lin, Victor Moroz
  • Patent number: 11908907
    Abstract: An embodiment of the invention may include a Vertical Field Effect Transistor (VFET) structure, and method of making that structure, having a first VFET and a second VFET. The first VFET may include a single liner between a first source/drain epi and a contact. The second VFET may include two liners between a second source/drain epi and a contact. This may enable proper contact liner matching for differing VFET devices.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: February 20, 2024
    Assignee: International Business Machines Corporation
    Inventors: Heng Wu, Ruilong Xie, Tian Shen, Kai Zhao
  • Patent number: 11908932
    Abstract: An apparatus includes at least one vertical transistor having a channel region. The channel region includes an upper region having a first width and a lower region below the upper region and having a second width smaller than the first width. The upper region defines at least one overhang portion extending laterally beyond the lower region. The at least one vertical transistor further includes gate electrodes at least partially vertically beneath the at least one overhang portion of the upper region of the channel region. Additional apparatuses and related systems and methods are also disclosed.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: February 20, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, Kevin J. Torek, Kamal M. Karda, Yunfei Gao, Kamal K. Muthukrishnan
  • Patent number: 11908860
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip (IC) having a device section and a pick-up section. The IC includes a semiconductor substrate. A first fin of the semiconductor substrate is disposed in the device section. A second fin of the semiconductor substrate is disposed in the pick-up section and laterally spaced from the first fin in a first direction. A gate structure is disposed in the device section and laterally spaced from the second fin in the first direction. The gate structure extends laterally over the semiconductor substrate and the first fin in a second direction perpendicular to the first direction. A pick-up region is disposed on the second fin. The pick-up region continuously extends from a first sidewall of the second fin to a second sidewall of the second fin. The first sidewall is laterally spaced from the second sidewall in the first direction.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: February 20, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Wen Su, Lien Jung Hung, Ping-Wei Wang, Wen-Chun Keng, Chih-Chuan Yang, Shih-Hao Lin
  • Patent number: 11903210
    Abstract: A semiconductor memory device includes a semiconductor substrate, transistors formed in an upper surface of the semiconductor substrate, a stacked body provided on the semiconductor substrate, a first contact, and a second contact. The transistors are arranged along a first direction. A minimum period of an arrangement of the transistors is a first period. The stacked body includes electrode films. A configuration of a first portion of the stacked body is a staircase-like having terraces. A first region and a second region are set along the first direction in the first portion. A length in the first direction of the terrace disposed in the second region is longer than the first period. A length in the first direction of the terrace disposed in the first region is shorter than the first period.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 13, 2024
    Assignee: Kioxia Corporation
    Inventor: Tetsuaki Utsumi
  • Patent number: 11901480
    Abstract: The present disclosure provides a light-emitting device comprising a substrate with a topmost surface; a first semiconductor stack arranged on the substrate, and comprising a first top surface separated from the topmost surface by a first distance; a first bonding layer arranged between the substrate and the first semiconductor stack; a second semiconductor stack arranged on the substrate, and comprising a second top surface separated from the topmost surface by a second distance which is different form the first distance; a second bonding layer arranged between the substrate and the second semiconductor stack; a third semiconductor stack arranged on the substrate, and comprising third top surface separated from the topmost surface by a third distance; and a third bonding layer arranged between the substrate and the third semiconductor stack; wherein the first semiconductor stack, the second semiconductor stack, and the third semiconductor stack are configured to emit different color lights.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: February 13, 2024
    Assignee: EPISTAR CORPORATION
    Inventors: Chien-Fu Huang, Chih-Chiang Lu, Chun-Yu Lin, Hsin-Chih Chiu
  • Patent number: 11887897
    Abstract: Aspects of the present disclosure provide a method of fabricating a semiconductor device. For example, the method can include providing a substrate. The substrate can include a first type region and a second type region. The method can also include forming a multilayer stack on the substrate. The multilayer stack can include alternate metal layers and dielectric layers. The method can also include forming first and second openings through the multilayer stack to uncover the first and second type regions, respectively. The method can also include forming first and second vertical channel structures within the first and second openings, respectively. Each of the first and second vertical channel structures can have source, gate and drain regions being in contact with vertical sidewalls of the metal layers of the multilayer stack uncovered by a respective one of the first and second openings.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11875995
    Abstract: A method may include providing a substrate, where the substrate includes a first main surface and a second main surface, opposite the first main surface. The second main surface may include a stress compensation layer. The method may include directing ions to the stress compensation layer in an ion implant procedure. The ion implant procedure may include exposing a first region of the stress compensation layer to a first implant process, wherein a second region of the stress compensation layer is not exposed to the first implant process.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: January 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Scott Falk, Jun-Feng Lu, Qintao Zhang
  • Patent number: 11876125
    Abstract: Aspects of the present disclosure provide a 3D semiconductor apparatus and a method for fabricating the same. The 3D semiconductor apparatus can include a first semiconductor device including sidewall structures of a first gate metal sandwiched by dielectric layers, a first epitaxially grown channel surrounded by the sidewall structures; a second semiconductor device formed on the same substrate adjacent to the first semiconductor device that includes sidewall structures of a second gate metal sandwiched by dielectric layers, a second epitaxially grown channel surrounded by the sidewall structures; a salicide layer formed between the first and second semiconductor devices and metallization contacting each of the S/D regions and the gate regions. The 3D semiconductor apparatus may include a P+ epitaxially grown channel formed on the same substrate adjacent to an N+ epitaxially grown channel, the P+ epitaxially grown channel separated from N+ epitaxially grown channel by a diffusion break.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: January 16, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Mark I. Gardner, H. Jim Fulford
  • Patent number: 11862637
    Abstract: An integrated circuit device includes a first power rail, a first active area extending in a first direction, and a plurality of gates contacting the first active area and extending in a second direction perpendicular to the first direction. A first transistor includes the first active area and a first one of the gates. The first transistor has a first threshold voltage (VT). A second transistor includes the first active area and a second one of the gates. The second transistor has a second VT different than the first VT. A tie-off transistor is positioned between the first transistor and the second transistor, and includes the first active area and a third one of the gates, wherein the third gate is connected to the first power rail.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shao-Lun Chien, Ting-Wei Chiang, Hui-Zhong Zhuang, Pin-Dai Sue
  • Patent number: 11862452
    Abstract: In a first aspect, the present disclosure relates to a method for forming a contact isolation for a semiconductor device, comprising: providing a semiconductor structure comprising a trench exposing a contact thereunder, filling a bottom of the trench with a sacrificial material, infiltrating the sacrificial material with a ceramic material, and removing the sacrificial material.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: January 2, 2024
    Assignee: IMEC VZW
    Inventors: Boon Teik Chan, Waikin Li, Zheng Tao
  • Patent number: 11856743
    Abstract: A method includes etching a first semiconductor fin and a second semiconductor fin to form first recesses. The first and the second semiconductor fins have a first distance. A third semiconductor fin and a fourth semiconductor fin are etched to form second recesses. The third and the fourth semiconductor fins have a second distance equal to or smaller than the first distance. An epitaxy is performed to simultaneously grow first epitaxy semiconductor regions from the first recesses and second epitaxy semiconductor regions from the second recesses. The first epitaxy semiconductor regions are merged with each other, and the second epitaxy semiconductor regions are separated from each other.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kai-Hsuan Lee, Chia-Ta Yu, Cheng-Yu Yang, Sheng-Chen Wang, Sai-Hooi Yeong, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 11844242
    Abstract: An organic light-emitting display device including a substrate; a pixel in a display area of the organic light-emitting display device, the pixel being implemented by an organic light-emitting diode on the substrate; a first inclination structure surrounding the pixel; a second inclination structure at least partially surrounding the first inclination structure; and a planarization layer covering the first inclination structure and the second inclination structure and having a refractive index that is greater than a refractive index of the first inclination structure and is greater than a refractive index of the second inclination structure, wherein a height of the first inclination structure is greater than a height of the second inclination structure.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: December 12, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Woongsik Kim, Jinsu Byun, Koichi Sugitani, Gwangmin Cha, Saehee Han