Patents Examined by Mohammad Y. Meah
  • Patent number: 10781460
    Abstract: A method which enables olefin compound production with a high productivity and an enzyme used in the method, a mutation involving amino acid substitution has been introduced into various sites of diphosphomevalonate decarboxylase (MVD), thus preparing a large number of MVD variants. Next, the result of evaluating the variants for the catalytic activity related to the production of olefin compounds such as isoprene has revealed that MVD whose threonine at position 209 is substituted with a different amino acid has the catalytic activity, and that MVD whose arginine at position 74 is further substituted with a different amino acid in addition to position 209 has the catalytic activity at higher levels.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: September 22, 2020
    Assignees: RIKEN, ZEON CORPORATION, THE YOKOHAMA RUBBER CO., LTD.
    Inventors: Ryoko Orishimo, Tomokazu Shirai, Kazuhiro Takahashi, Misao Hiza, Yusuke Tanabe
  • Patent number: 10774348
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 15, 2020
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Patent number: 10774347
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of monoethylene glycol (MEG) and one or more three-carbon compounds such as acetone, isopropanol or propene. The MEG and one or more three-carbon compounds described herein are useful as starting material for production of other compounds or as end products for industrial and household use. The application further relates to recombinant microorganisms co-expressing a C2 branch pathway and a C3 branch pathway for the production of MEG and one or more three-carbon compounds. Also provided are methods of producing MEG and one or more three-carbon compounds using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally the products MEG and one or more three-carbon compounds.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: September 15, 2020
    Assignee: BRASKEM S.A.
    Inventors: Daniel Johannes Koch, Mateus Schreiner Lopes, Ane Fernanda Beraldi Zeidler, Lucas Pedersen Parizzi
  • Patent number: 10766945
    Abstract: The invention provides a fusion protein comprising, from N-terminus to C-terminus: a) a first portion of a Family B G-protein coupled receptor (GPCR) that comprises transmembrane helix (TM)-1, TM2 and TM3 of the GPCR; b) a stable protein domain; and c) a second portion of the GPCR comprising TM4, TM5, TM6 and TM7 of the GPCR. The invention also provides a method of crystallising a GPCR comprising providing the fusion protein of the invention and crystallising it to obtain crystals.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: September 8, 2020
    Assignee: Heptares Therapeutics Limited
    Inventors: Seyed Ali Jazayeri-Dezfuly, Fiona Hamilton Marshall
  • Patent number: 10760067
    Abstract: The present invention discloses a ?-galactosidase mutant, and a preparation method and application thereof, belonging to the fields of gene engineering and enzyme engineering. Amino acids of specific sites in the ?-galactosidase are mutated, the ?-galactosidase is transferred into a recombinant bacterium, and enzymatic transformation is performed under optimized conditions, so that the yield of galactooligosaccharide produced by the mutant reaches 59.8%, which is increased by about 70% as compared with that of wild enzyme, thereby implementing the increase of the galactooligosaccharide yield. The present invention has very high industrialized application value.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: September 1, 2020
    Assignee: Jiangnan University
    Inventors: Jing Wu, Dan Wu, Xin Gao
  • Patent number: 10760107
    Abstract: The purpose of the present invention is to provide an organism having an ergothioneine productivity that is capable of easily producing ergothioneine within a short period of time at a high yield, as compared with a conventional technology, and, therefore, enables ergothioneine production on an industrial scale. This purpose can be achieved by a transformed fungus into which a gene encoding enzyme (1) or genes encoding enzymes (1) and (2) have been inserted and in which the inserted gene(s) are overexpressed. (1) an enzyme catalyzing a reaction of synthesizing hercynyl cysteine sulfoxide from histidine and cysteine in the presence of S-adenosyl methionine, iron (II) and oxygen. (2) An enzyme catalyzing a reaction of synthesizing ergothioneine from hercynyl cysteine sulfoxide using pyridoxal 5?-phosphate as a coenzyme.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: September 1, 2020
    Assignee: KIKKOMAN CORPORATION
    Inventors: Seiichi Hara, Keiko Kurosawa, Keiichi Ichikawa
  • Patent number: 10752931
    Abstract: The invention further relates to a process for the enzymatic synthesis of an (oligo)peptide. The invention relates to a method for designing an enzymatic synthesis process of an (oligo)peptide, comprising identifying two or more (oligo)peptide fragments of an (oligo)peptide, which fragments are (oligo)peptides suitable for preparing the (oligo)peptide by enzymatic condensation of the two or more peptide fragments using a ligase. The invention relates to a method for designing an enzymatic synthesis process of a cyclic (oligo)peptide, comprising identifying a non-cyclic (oligo)peptide from which the cyclic (oligo)peptide can be prepared by cyclisation, catalysed by a cyclase. The invention further relates to a process for the enzymatic synthesis of an (oligo)peptide.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: August 25, 2020
    Assignee: ENZYPEP B.V.
    Inventors: Timo Nuijens, Peter Jan Leonard Mario Quaedflieg
  • Patent number: 10745672
    Abstract: Described herein is a chemostat-like continuous cell culture system that combines certain advantages of perfusion open systems and chemostat open systems to improve the culturing of mammalian cells, e.g., genetically modified cells, particularly in serum-free or chemically-defined media. The continuous culture system described herein involves culturing mammalian cells in a continuous cell culture system, which comprises a cell retention device, wherein the cell culture system has a dilution rate (D) of less than about 2 d?1, and a cell density of less than about 2×107 cell/mL.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: August 18, 2020
    Assignees: Baxalta Incorporated, Baxalta GmbH
    Inventors: Leopold Grillberger, Manfred Reiter, Daniel Fleischanderl
  • Patent number: 10724008
    Abstract: The invention relates to ketoreductases and the use thereof. The ketoreductases of the invention are particularly useful for enzymatically catalyzing the reduction of ketones to chiral secondary alcohols.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 28, 2020
    Assignee: C-LEcta GmbH
    Inventors: Ramona Schmiedel, Andreas Vogel, Sabrina Koepke, Rico Czaja, Claudia Feller, Hedda Merkens, Kamila Rzeznicka, Daniel Schwarze, Thomas Greiner-Stoeffele, Andreas Petri, Marc Struhalla
  • Patent number: 10717973
    Abstract: The present invention relates to novel mutants with cyclase activity and use thereof in a method for biocatalytic cyclization of terpenes, such as in particular for the production of isopulegol by cyclization of citronellal; a method for the preparation of menthol and methods for the biocatalytic conversion of further compounds with structural motifs similar to terpene.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: July 21, 2020
    Assignee: BASF SE
    Inventors: Michael Breuer, Bernhard Hauer, Dieter Jendrossek, Gabriele Siedenburg, Juergen Pleiss, Demet Sirim, Silvia Fadenrecht
  • Patent number: 10711290
    Abstract: The purpose of the present invention is to provide an organism having an ergothioneine productivity that is capable of easily producing ergothioneine within a short period of time at a high yield, as compared with a conventional technology, and, therefore, enables ergothioneine production on an industrial scale. This purpose can be achieved by a transformed fungus into which a gene encoding enzyme (1) or genes encoding enzymes (1) and (2) have been inserted and in which the inserted gene(s) are overexpressed. (1) an enzyme catalyzing a reaction of synthesizing hercynyl cysteine sulfoxide from histidine and cysteine in the presence of S-adenosyl methionine, iron (II) and oxygen. (2) An enzyme catalyzing a reaction of synthesizing ergothioneine from hercynyl cysteine sulfoxide using pyridoxal 5?-phosphate as a coenzyme.
    Type: Grant
    Filed: December 25, 2015
    Date of Patent: July 14, 2020
    Assignee: KIKKOMAN CORPORATION
    Inventors: Seiichi Hara, Keiko Kurosawa, Keiichi Ichikawa
  • Patent number: 10704070
    Abstract: The present disclosure relates to the biosynthesis of indigoid dye precursors and their conversion to indigoid dyes. Specifically, the present disclosure relates to methods of using polypeptides to produce indigoid dye precursors from indole feed compounds, and the use of the indigoid dye precursors to produce indigoid dyes.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: July 7, 2020
    Assignee: The Regents of the University of California
    Inventors: John Eugene Dueber, Zachary Nicholas Russ, Tammy Melody Hsu, Terry Don Johnson, Jr., Bernardo Cervantes, Ramya Lakshmi Prathuri, Shyam Pravin Bhakta, Arthur Muir Fong, III, Luke Nathaniel Latimer
  • Patent number: 10689675
    Abstract: Disclosed are methods of synthesizing racemic 2-(difluoromethyl)-1-(alkoxycarbonyl)-cyclopropanecarboxylic acids and 2-(vinyl)-1-(alkoxycarbonyl)-cyclopropanecarboxylic acids and their salts, such as the dicyclohexylamine salt. Also disclosed are methods for preparing enantioenriched (1R,2R)-1-((tert-butoxycarbonyl)amino)-2-(difluoromethyl)cyclopropane-1-carboxylic acid and esters of the same. These compounds are useful intermediates in the synthesis of viral protease inhibitors.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: June 23, 2020
    Assignee: AbbVie Inc.
    Inventors: Michael J. Abrahamson, Sanjay R. Chemburkar, Angelica B. Kielbus, Russell D. Cink
  • Patent number: 10689607
    Abstract: Disclosed are an enzymatic batchwise or continuous process for the production of fatty acid alkyl esters for use in the biofuels, food and detergent industries and a system therefor. The process utilizes enzymes immobilized on a hydrophobic resin mixed with a fatty acid source and an alcohol or alcohol donor in the presence of an alkaline or mild alkaline aqueous buffer, or in the presence of water or aqueous solution. The production process for fatty acid alkyl esters is carried out by transesterification or esterification simultaneously or sequentially. The biocatalyst activity is maintained with no significant activity losses in multiple uses and also avoids the accumulation of glycerol and water by-products or other hydrophilic compounds on the biocatalyst.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: June 23, 2020
    Assignee: Trans Bio-Diesel Ltd.
    Inventors: Sobhi Basheer, Maisa Haj, Usama Mohsen, Doaa Shehadeh, Ahmad Hindawi, Emad Masoud, Ahmad Egbarieh, Ramez Masri
  • Patent number: 10688239
    Abstract: The present invention relates to a method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from mammalian blood/use of a device comprising a carbohydrate immobilized on a solid substrate, said carbohydrate having a binding affinity for a pathogenic microbe, an inflammatory cell or an inflammatory protein, for extracorporeal removal of said pathogenic microbe, inflammatory cell or inflammatory protein from mammalian blood/use of a carbohydrate having a binding affinity for a pathogenic microbe, an inflammatory cell or an inflammatory protein, wherein said carbohydrate is immobilized on a solid substrate, in the preparation of a device for treatment of a condition caused or aggravated by said pathogenic microbe, inflammatory cell or inflammatory protein and a method for treatment of a mammalian subject suffering from a condition caused or aggravated by a pathogenic microbe, an inflammatory cell or an inflammatory protein.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: June 23, 2020
    Assignee: ExThera Medical Corporation
    Inventors: Olle Larm, Tomas Bergstrom
  • Patent number: 10683473
    Abstract: A bacteria referred to here as Bacillus subtilis 6A-1 is provided, compositions thereof and processes for use of the bacteria, spores, cells, extracts and enzymes. The compositions which comprise the bacteria, spores, cells, extracts and/or enzymes are capable of degrading polysaccharides. Such compositions are capable of degrading cellulose, including plant-produced cellulose, microcrystalline cellulose and carboxymethyl cellulose. The bacteria produces at least two cellulose-degrading protein fractions. Cellulose degrading activity continues across pH2 to pH13.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: June 16, 2020
    Assignee: Agri-King, Inc.
    Inventors: Gbenga Ayangbile, Mary Grzemski, James F. Tobey, Jr., David Spangler, Lucas Krueger
  • Patent number: 10676762
    Abstract: Methods and systems for the production of alcohols are described. A two stage process is utilized, where fermentation in a first stage produces an intermediate product, such as an amino acid or organic acid, from a carbon containing feedstock. A second stage produces alcohol by fermentation of this intermediate product.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: June 9, 2020
    Assignee: EASEL BIOTECHNOLOGIES LLC
    Inventors: Yi-Xin Huo, Kwang Myung Cho
  • Patent number: 10676764
    Abstract: The present invention relates to a novel and inventive process for the production of sorbitol from D-sucrose.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: June 9, 2020
    Assignee: DSM IP ASSETS B.V.
    Inventors: Mae Joanne Aguila, Hans-Peter Hohmann, Laurent Lefort, Jonathan Alan Medlock, Guenter Pappenberger
  • Patent number: 10676406
    Abstract: Hopanoids, hopanoids-producing nitrogen-fixing bacteria, and related formulations, systems and methods are described herein. In particular, hopanoids alone or in combination with hopanoid-producing nitrogen-fixing bacteria can be used as biofertilizer to stimulate plant growth and yield with enhanced tolerance to diverse stresses found in plant-microbe symbiotic microenvironments.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: June 9, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Dianne K. Newman, Gargi Kulkarni, Brittany Jo Belin, Eric Giraud, Antonio Molinaro, Alba Silipo
  • Patent number: 10662453
    Abstract: Methods that may be used for the manufacture of the chemical compound (S)-norcoclaurine, (S)-norlaudanosoline, and (S)-norcoclaurine or (S)-norlaudanosoline synthesis intermediates are provided. (S)-Norcoclaurine, (S)-norlaudanosoline, and (S)-norcoclaurine or (S)-norlaudanosoline synthesis intermediates are useful as precursor products in the manufacture of certain medicinal agents.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: May 26, 2020
    Assignee: Willow BioSciences Inc.
    Inventor: Peter James Facchini