Patents Examined by Natasha Young
  • Patent number: 9856166
    Abstract: Process and apparatus is disclosed for providing a chemical reaction between calcium oxide containing grit particles to produce calcium hydroxide and heat, capturing the heat of hydration and using it to preheat water initially at ambient temperature, to rise to an elevated temperature to increase the amount of lime present in the water to a supersaturated lime suspension level, with the chemical reaction running to completion, followed by cooling. Heat from a water jacket may be used to raise the temperature in the lime slaker.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: January 2, 2018
    Assignee: RDP TECHNOLOGIES, INC.
    Inventors: Richard W. Christy, Michael Quici, Louis Litz
  • Patent number: 9856426
    Abstract: A process and system for producing liquid and gas fuels and other useful chemicals from carbon containing source materials comprises cool plasma gasification and/or pyrolysis of a source material to produce synthesis gas using the produced synthesis gas for the production of a hydrocarbon, methanol, ammonia, urea, and other products. The process and system are capable of sequestering carbon dioxide and reducing NOx and SOx.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: January 2, 2018
    Assignee: WASTE 2 FUEL AB
    Inventors: Henrik Selstam, Erik Fareid
  • Patent number: 9856197
    Abstract: Disclosed is a method that reforms flare gas or other raw natural gas source, using air without steam, to directly produce dimethyl ether (DME), a direct diesel substitute. The method first reforms an air-natural gas mixture at ambient atmospheric pressures, and then compresses the resulting CO-hydrogen-nitrogen gas mixture to 100-2,000 psi, and feeds it through a combined reactor which reacts the gas mixture directly into DME. The nitrogen is returned to the atmosphere. DME is an excellent diesel fuel, and can be used to displace significantly costlier and dirtier petroleum-based diesel fuel, while solving a critical problem with flaring or other wasted natural gas. For example, the roughly 120 billion cubic feet per year that was flared in North Dakota in 2014 could be converted into over 3 million tons of DME using the disclosed method.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: January 2, 2018
    Assignee: Pioneer Energy, Inc.
    Inventors: Robert M Zubrin, Boris Nizamov, Thomas L Henshaw, Adam M Kortan, James Siebarth, Colin Apke, Mark Berggren
  • Patent number: 9850460
    Abstract: An apparatus is described which includes at least one reactor, at least one linear piston pump, the or each piston pump including a tube, a piston and an arm coupled to the piston, the or each piston pump arranged to inject feedstock to a respective reactor, a beam or plate coupled to the arm(s) of the piston pump(s) configured to linearly drive the piston(s) and a linear actuator for driving the beam or plate. The piston pump has a volume of at least 50 milliliters and an output port having a diameter of at least 5 mm.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: December 26, 2017
    Assignee: ANAERO TECHNOLOGY LTD.
    Inventors: Ray Middleton, Edgar Blanco, Robin Proctor
  • Patent number: 9834729
    Abstract: A plant for treating fluid products obtained from an oil well, to produce a hydrocarbon product, comprises a series of separators at progressively lower pressures, to which the fluid products are supplied in succession. A high pressure gas phase is obtained from the separator and is supplied to a flow restrictor so as to undergo cooling through the Joule Thomson effect, and then passed to a NGL separator to produce a natural gas liquid stream and a gaseous natural gas stream. The natural gas stream is then processed chemically, using a synthesis gas production unit, and a Fischer-Tropsch synthesis unit to produce a synthetic crude oil. The synthetic crude oil is supplied to one of the separators, and the natural gas liquid stream is supplied to another of the separators; the pressure in the one separator is greater than the pressure in the other separator.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: December 5, 2017
    Assignee: CompactGTL Limited
    Inventors: Michiel Coetzee, Michael Joseph Bowe
  • Patent number: 9827544
    Abstract: A reaction device for preparing light olefins from methanol and/or dimethyl ether, and more specifically relates to a reaction device for preparing light olefins from methanol and/or dimethyl ether, which mainly comprises a dense phase fluidized bed reactor (2), a cyclone separator (3), a stripper (5), a lift pipe (7), a dense phase fluidized bed regenerator (10), a cyclone separator (11), a stripper (13), and a lift pipe (15), wherein the dense phase fluidized bed reactor (2) is separated into n (n?2) secondary reaction zones by a material flow controller (17), and the dense phase fluidized bed regenerator (10) is separated into m (m?2) secondary regeneration zones by the material flow controller (17).
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: November 28, 2017
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Tao Zhang, Mao Ye, Zhongmin Liu
  • Patent number: 9821288
    Abstract: An apparatus and method for delivery of additives(s), e.g., catalyst, co-catalyst, scavengers, and/or other reaction- or product-modifying agents, to a reaction or mixing site, such as a reaction vessel, offers the capability for multi-additive delivery and customization of additive selection, flow and flow rate, and if desired, mixing thereof, without production train shutdowns. The invention includes at least two additive sources that are detachably connected, with conduit, to the reaction or mixing site, and a process control means, preferably automated, that is capable of initiating, terminating, and determining the rate of flow from the additive sources.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: November 21, 2017
    Assignee: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Frank J. Cerk, Pradeep Jain, Jr., Michelle D. Dirk, Harold W Boone
  • Patent number: 9822316
    Abstract: A system of reforming reactors comprises a plurality of reactors coupled by flow lines, a feed header coupled to the plurality of reactors by a plurality of feed lines, an effluent header coupled to the plurality of reactors by a plurality of effluent lines, and a plurality of valves disposed in the flow lines, the feed lines, and the effluent lines. Each reactor comprises a reforming catalyst, and the plurality of valves is configured to dynamically connect the plurality of reactors to create a first serial flow path and reconnect the plurality of reactors to create a second serial flow path through the plurality of reactors. A first reactor of the plurality of reactors is adjacent to a second reactor of the plurality of reactors in the first serial flow path, and the first reactor is not adjacent to the second reactor in the second serial flow path.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: November 21, 2017
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Scott G. Morrison, Tin-Tack Peter Cheung, Joe Bergmeister, III, Vincent D. McGahee, Bruce D. Murray, Daniel M. Hasenberg
  • Patent number: 9822087
    Abstract: There is provided a manufacturing assembly for the production of an alkylene oxide and a stream of glycol ethers. The manufacturing assembly produces the alkylene oxide and stream of glycol without the use of equipment for separating substantially all of the alkyl alcohol from the alkylene oxide product stream. Thus, the use of additional pieces of equipment can be avoided, or the equipment required to effectuate any required further separation and/or purification may be smaller and/or cheaper to purchase and/or operate.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: November 21, 2017
    Inventors: Tina L. Arrowood, Derrick W. Flick, John F. Ackford
  • Patent number: 9815040
    Abstract: A fluid solids contacting device comprising a vessel; a first grid assembly section which comprises a plurality of horizontal chords spaced horizontally apart from each other and a plurality of grid platforms inserted between the horizontal chords; wherein each horizontal chord comprises a structural member with sufficient mechanical strength to withstand fluidized forces in the vessel; a plurality of chairs attached to an inside surface of the vessel and spaced circumferentially apart to support the structural member; and wherein each structural member is supported on one or more of the plurality of chairs is provided.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: November 14, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Matthew T. Pretz, Don F. Shaw, Fermin A. Sandoval
  • Patent number: 9815043
    Abstract: This application provides an apparatus for making a hydrocarbon with a reduced amount of an organic halide, comprising: a. a process unit comprising an effluent port, that produces and discharges the hydrocarbon comprising the organic halide; and b. a halide removal vessel with an inlet that feeds the hydrocarbon from the process unit, wherein the halide removal vessel comprises an anhydrous metal chloride and in which the hydrocarbon comprising the organic halide is contacted with the anhydrous metal chloride under anhydrous conditions to produce a contacted hydrocarbon having from 50-100 wt % of a total halide in the hydrocarbon removed.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: November 14, 2017
    Assignee: Chevron U.S.A. Inc.
    Inventor: Howard Steven Lacheen
  • Patent number: 9815755
    Abstract: The present subject matter relates to methods and apparatuses for the continuous preparation of a cumene feed for a cumene oxidation process. More specifically, the subject matter relates to a process for passing a cumene alpha-methylstyrene stream through a caustic wash column having an integrated water wash section for the removal of organic acids.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: November 14, 2017
    Assignee: UOP LLC
    Inventors: Chad A. Williams, Patrick J. Bullen
  • Patent number: 9815041
    Abstract: The present invention relates to a fluidized bed reactor, comprising a reaction tube, a distributor and a heating device, the reaction tube and the distributor at the bottom of the reaction tube composing a closed space, the distributor comprising a gas inlet and a product outlet, and the reaction tube comprising a tail gas outlet and a seed inlet at the top or upper part respectively, characterized in that the reaction tube comprises a reaction inner tube and a reaction outer tube, and the heating device is an induction heating device placed within a hollow cavity formed between the external wall of the reaction inner tube and the internal wall of the reaction outer tube, wherein the hollow cavity is filled with hydrogen, nitrogen or inert gas for protection, and is able to maintain a pressure of about 0.01 to about 5 MPa; and also to a process of producing high purity granular polysilicon using the reactor.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: November 14, 2017
    Assignee: JIANGSU ZHONGNENG POLYSILICON TECHNOLOGY DEVELOPMENT CO., LTD.
    Inventors: Wenwu Jiang, Hongfu Jiang, Feng Wu, Zhenwu Zhong, Wenlong Chen
  • Patent number: 9790154
    Abstract: Provided is a methanol plant that can obtain fresh water from sea water by using, in a seawater desalination device, the exhaust heat discharged in a step for producing methanol from natural gas. The methanol plant is provided with: a heat exchanger (4) that recovers into a thermal medium (for example, seawater) the exhaust heat discharged from a step for producing methanol from a feed stock (for example, natural gas); and a seawater desalinization device (6) that obtains freshwater from seawater using the exhaust heat recovered by means of the thermal medium.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: October 17, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masaki Iijima, Haruaki Hirayama
  • Patent number: 9783742
    Abstract: A system and method is provided for upgrading a continuously flowing process stream including heavy crude oil (HCO). A reactor receives the process stream in combination with water, at an inlet temperature within a range of about 60° C. to about 200° C. The reactor includes one or more process flow tubes having a combined length of about 30 times their aggregated transverse cross-sectional dimension, and progressively heats the process stream to an outlet temperature T(max)1 within a range of between about 260° C. to about 400° C. The reactor maintains the process stream at a pressure sufficient to ensure that it remains a single phase at T(max)1. A controller selectively adjusts the rate of flow of the process stream through the reactor to maintain a total residence time of greater than about 1 minute and less than about 25 minutes.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: October 10, 2017
    Assignee: Aduro Energy, Inc.
    Inventor: W. Marcus Trygstad
  • Patent number: 9776155
    Abstract: A system for reducing dioxygen (O2) present in vapors from oil storage tanks. The system may include an inlet that receives vapors from the tanks; a heating device coupled with the inlet that heats vapors to a first temperature to form heated vapor; and a vessel coupled receiving heated vapor and containing at least one catalyst to reduce dioxygen from the heated vapor. The catalyst may include palladium, and the vessel may include zinc oxide to remove sulfur from the heated vapor. A compressor may be used to compress the vapors. A controller may be provided to monitor O2 concentration in heated vapor, and the controller directs flow of heated vapor to a gas pipeline if the O2 concentration is below a predetermined level; or if the O2 concentration is unacceptably high, the controller directs flow of vapor to be re-circulated within the system to further reduce O2 concentration therein.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: October 3, 2017
    Assignee: EcoVapor Recovery Systems, LLC
    Inventors: Hans Peter Mueller, David Scott Gorham, Nicholas Taylor Koerner
  • Patent number: 9776868
    Abstract: Disclosed is an apparatus for preparing phosphoric acid from a fume exiting the kiln in a kiln phosphoric acid process, the apparatus comprises a hydration tower and an acid solution cyclical spraying system, a fume inlet of the fume exiting the kiln is disposed at a lower portion of the hydration tower, a fume outlet after hydration and absorption is disposed at the top, a spraying device is disposed in a cavity of the hydration tower above the fume inlet, a liquid inlet of the acid solution cyclical spraying system is disposed on a bottom of the hydration tower, a liquid outlet of the acid solution cyclical spraying system is connected to a liquid intake pipe of the spraying device. The present invention has the advantages of simple structure, reasonable layout, strong adaptability, high raw material utilization rate, reduced contaminant emissions, and high recovery rate of phosphoric acid etc.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: October 3, 2017
    Assignee: SICHUAN KO CHANG TECHNOLOGY CO., LTD.
    Inventors: Yonghe Hou, Shifa Wei, Chenjuan Wei
  • Patent number: 9776163
    Abstract: A system for the integral chlorine dioxide production with relatively independent sodium chlorate electrolytic production and chlorine dioxide production is provided. The system may feed electrolyte solution into a solid-liquid filter, filtering out the crystal and eliminating sodium chloride and sodium dichromate. The sodium chlorate crystal may be fed into a chlorine dioxide generator after dissolving, while sodium chloride and sodium dichromate solution separately return to electrolyzer for electrolysis process. Sodium chloride may be constantly formed as a by-product in the chlorine dioxide production unit, and solution containing the sodium chloride is withdrawn from the generator and, after filtration, washing and dissolution, recycled back to sodium chlorate production unit. This way, there is no need of sodium chloride make-up.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: October 3, 2017
    Assignee: GuangXi University
    Inventors: Shuangfei Wang, Chengrong Qin, Xueping Song, Xusheng Li, Shuangxi Nie, Chen Liang
  • Patent number: 9776938
    Abstract: The invention concerns a method for producing 2,3,3,3-tetrafluoropropene comprising: a fluoridation reaction of a halopropane and/or halopropene into 2,3,3,3-tetrafluoropropene by means of hydrogen fluoride; the recovery of a gas stream resulting from the reaction; the cooling and partial condensation of the gas stream resulting from the reaction into a partially condensed stream; the separation of the partially condensed stream into a gas fraction and a liquid fraction; the compression of the gas fraction into a compressed gas fraction; the compression of the liquid fraction into a compressed liquid fraction; the distillation of the compressed gas fraction and compressed liquid fraction in order to provide a stream of 2,3,3,3-tetrafluoropropene, a stream of hydrochloric acid, and a stream of unreacted hydrogen fluoride. The invention also concerns an installation suitable for implementing said method.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: October 3, 2017
    Assignee: Arkema France
    Inventors: Dominique Deur-Bert, Bertrand Collier, Laurent Wendlinger
  • Patent number: 9770698
    Abstract: This specification discloses an operational continuous process to convert lignin as found in ligno-cellulosic biomass before or after converting at least some of the carbohydrates. The continuous process has been demonstrated to create a slurry comprised of lignin, raise the slurry comprised of lignin to ultra-high pressure, deoxygenate the lignin in a lignin conversion reactor over a catalyst which is not a fixed bed without producing char. The conversion products of the carbohydrates or lignin can be further processed into polyester intermediates for use in polyester preforms and bottles.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: September 26, 2017
    Assignee: Biochemtex S.p.A.
    Inventors: Dan Gastaldo, Steven Ryba, Aaron Murray, Guliz Arf Elliott