Patents Examined by Neel Shah
  • Patent number: 9472474
    Abstract: The disclosed technology generally relates to methods of characterizing semiconductor materials, and more particularly to methods of characterizing shallow semiconductor junctions. In one aspect, the method of characterizing shallow semiconductor junctions comprises providing a substrate comprising a shallow junction formed at a first main surface, where the shallow junction is formed substantially parallel to the first main surface. The method additionally comprises providing a dielectric layer on the first main surface. The method additionally comprises iterating, at least twice, a combination of processes including providing a respective charge on a predetermined area of the dielectric layer via a charge applicator, and measuring a corresponding junction photovoltage for the predetermined area.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: October 18, 2016
    Assignee: IMEC VZW
    Inventor: Jean-Luc Everaert
  • Patent number: 9472476
    Abstract: System and method for test structure on a wafer. According to an embodiment, the present invention provides a test structure for testing an integrated circuit. For example, the test structure and the integrated circuit are manufactured on a same substrate material and the testing being conducted is in a temperature-controlled environment. The test structure includes a top structure positioned above the integrated circuit, the top structure including a first metal material, which includes a first electrical terminal and a second electrical terminal. The test structure also includes a bottom structure positioned below the integrated circuit, the bottom structure including a first silicon material. A first side structure is positioned between the top structure and the bottom structure and located next to a first side of the integrated circuit. A second side structure is positioned between the top structure and the bottom structure and located next to a second side of the integrated circuit.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 18, 2016
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Wang Jian Ping, Chin Chang Liao, Waisum Wong
  • Patent number: 9453888
    Abstract: The sensor device includes: a physical quantity voltage conversion element; a differential amplifier; a first capacitor that includes one terminal connected to a first output terminal of the differential amplifier; a comparator; a low pass filter circuit arranged at the first output terminal of the differential amplifier; a control circuit configured to on/off control the physical quantity voltage conversion element, the differential amplifier, the comparator, and the low pass filter circuit; and a logic circuit configured to output a result of operation processing performed on an output signal of the comparator. The logic circuit is configured to: successively verify, in a case where there is a change between a previous logic output and a first logic output, the logic outputs a plurality of times; and output a control signal to the control circuit so that the low pass filter circuit is turned on in a second signal processing period and thereafter.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: September 27, 2016
    Assignee: SII SEMICONDUCTOR CORPORATION
    Inventors: Tomoki Hikichi, Minoru Ariyama, Kentaro Fukai, Takemasa Miura
  • Patent number: 9453889
    Abstract: To provide a magnetic sensor device which maintains accuracy thereof while reducing current consumption by switching drive power of a Hall element to two drive power. A magnetic sensor device is equipped with a driving circuit which supplies power to a sensor element, a switch changeover circuit which restricts the supply of the power from the driving circuit to the sensor element, a differential amplifier circuit which performs arithmetic processing on an output signal of the sensor element, a threshold voltage generating circuit which generates a threshold voltage used in magnetism determination, a comparison circuit which compares and determines a voltage of the differential amplifier circuit and the threshold voltage, and a logic circuit which according to the output of the comparison circuit, switches the power outputted from the driving circuit, switches the threshold voltage and controls on/off of the switch changeover circuit in a constant cycle.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: September 27, 2016
    Assignee: SII SEMICONDUCTOR CORPORATION
    Inventors: Takemasa Miura, Minoru Ariyama, Tomoki Hikichi, Kentaro Fukai
  • Patent number: 9453880
    Abstract: An active shunt source-measure unit (SMU) circuit can include an SMU or power supply having an active shunt circuit that is integrated with the current measuring sub-circuit of the SMU circuit. The active shunt circuit may be active during voltage sourcing of the SMU circuit and deactivated during current sourcing of the SMU circuit.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 27, 2016
    Assignee: KEITHLEY INSTRUMENTS, INC.
    Inventor: Wayne C. Goeke
  • Patent number: 9448054
    Abstract: A throttle opening detection device includes a rotor which is rotated in an interlocking manner by manipulation of an acceleration grip which is mounted together with the rotor on a handlebar. First magnets are arranged near a peripheral portion of one side surface of the rotor along the circumferential direction of the rotor, while second magnets are respectively laminated to the first magnets, and have opposite polarities to the first magnets. The first magnets with the second magnets laminated thereto are disposed with a set spacing therebetween. A magnetic sensor for detecting a magnetic force generated by all the magnets is arranged to oppose, with a clearance therebetween, the one side surface of the rotor in which the magnets are arranged, in an axial direction of the rotor.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 20, 2016
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshihiro Nomura, Yuichi Kawasaki
  • Patent number: 9449967
    Abstract: A semiconductor circuit can include a plurality of arrays of transistors having differing characteristics and operating at low voltages and currents. A drain line drive signal may provide a potential to a drain line to which a selected transistor is connected. A row of drain mux circuits can provide reduced leakage current on the drain line drive signal so that more accurate current measurements may be made. A gate line drive signal may provide a potential to a gate line to which the selected transistor is connected. A column of gate line mux circuits can provide a gate line low drive signal to unselected transistors to reduce leakage current in unselected transistors so that more accurate drain current measurements may be made to the selected transistor.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 20, 2016
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Richard S. Roy, Samuel Leshner
  • Patent number: 9417049
    Abstract: A rotational angle detecting device includes a resistor of which one end is connected to the power source and the other end is grounded, a rotary potentiometer having two wipers which come into sliding contact with the surface of the resistor, a control unit which detects voltage applied to each of the wipers depending on the positions thereof upon the surface of the resistor, two resistors connected at one end to each of the two wipers, and switching means which switch the connection state between the other end of the two resistors and the power source under control of the control unit.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: August 16, 2016
    Assignee: ALPS ELECTRIC CO., LTD.
    Inventors: Ryuji Ataka, Yuzuru Ito, Sadayuki Amako
  • Patent number: 9417266
    Abstract: A method and structures implement an enhanced handheld transfer impedance probe including a rigid probe housing body that carries a pair of coaxial RF connectors providing connections to a network analyzer. A base member includes a respective pair of independent electrical contacts and a common interconnect electrical contact. Each of the respective electrical contacts includes a respective associated electrically conductive compressible pad. Each respective compressible pad extends between rigid stops having a set height to limit gasket compression and enable repeatable gasket compressions for repeatable measurements with the handheld transfer impedance probe. An interconnection structure includes respective interconnects connecting between the coaxial RF connectors and respective electrical contacts.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: August 16, 2016
    Assignee: International Business Machines Corporation
    Inventors: Timothy P. Duncan, Edward C. Gillard, Don A. Gilliland
  • Patent number: 9400299
    Abstract: A single-layer two-dimensional touch sensor includes a substrate and a flexible printed circuit board. First and second electrodes forming capacitor structures are disposed on the substrate. The first electrodes are arranged in a first direction. A group of second electrodes is disposed between each two adjacent first electrodes. The second electrodes are arranged in a head-to-tail meshed fashion in a second direction perpendicular to the first direction. In each group of second electrodes, lead lines of all second electrodes directly lead out to the flexible printed circuit board, and lead lines of the second electrodes at the same place in different group are short-connected at a node on the flexible printed circuit board. This touch sensor is a mutual capacitance structure which supports multi-point detection and increases the detection accuracy. In addition, no jumper wire is required on the substrate, which reduces the requirements of the fabrication process.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 26, 2016
    Assignee: SHENZHEN HUIDING TECHNOLOGY CO., LTD.
    Inventor: Gengchun Deng
  • Patent number: 9389249
    Abstract: A current detector that detects, based on output signals of N coreless current sensors, where N is a natural number of 3 or more, currents flowing in N conductors in a circuit connected so that the sum of the currents flowing in the N conductors becomes zero. The current detector has a signal-current correlation acquiring section that acquires a signal-current correlation representing a correlation between the output signals of the N coreless current sensors and the currents flowing in the N conductors. Furthermore, a current calculating section that calculates the currents flowing in the N conductors based on the output signals of all the N coreless current sensors by using the signal-current correlation.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: July 12, 2016
    Assignee: AISIN AW CO., LTD.
    Inventors: Yuya Hozumi, Keisuke Nishimura, Subrata Saha
  • Patent number: 9366698
    Abstract: A clamp for measuring a ground loop current includes a first jaw secured to a fixed support and a second jaw pivotally mounted on the fixed support, and pivotable between a position closing the clamp and an open position, and an elastic element for returning the movable jaw to the closed position. The clamp includes a device scaling down the force required for opening the clamp, by application of the force to a trigger. The device is mounted between the elastic return element and the trigger, upon opening the clamp.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: June 14, 2016
    Assignee: CHAUVIN ARNOUX
    Inventors: Philippe Legros, Thierry Rouillard
  • Patent number: 9360499
    Abstract: A test socket has a housing with an inlet configured to receive a substrate. A plurality of terminals are coupled to the housing, and a plurality of sliding pins are coupled to the terminals. The pins are configured to make contact with respective pads or terminals of the substrate to be tested. The pins have different lengths or positions to send and receive test signals.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: June 7, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Youngchul Lee
  • Patent number: 9349943
    Abstract: The Hall sensor semiconductor component comprises an arrangement of at least two Hall sensors (1, 2) with signal connections (11, 13, 21, 23) and supply connections (12, 14, 22, 24), and a switching network, which varies the positions of the supply connections in successive phases and connects the Hall sensors in series in each phase via the respective signal connections.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: May 24, 2016
    Assignee: ams AG
    Inventor: Georg Röhrer
  • Patent number: 9348003
    Abstract: A measuring system having a first magnetic field sensor, a second magnetic field sensor, a third magnetic field sensor, an encoder, and an evaluation circuit to which the first magnetic field sensor, the second magnetic field sensor, and the third magnetic field sensor are connected. The evaluation circuit is configured to determine the position of the encoder based on a first measurement signal of the first magnetic field sensor and a second measurement signal of the second magnetic field sensor and a third measurement signal of the third magnetic field sensor.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 24, 2016
    Assignee: Micronas GmbH
    Inventors: Joachim Ritter, Joerg Franke
  • Patent number: 9341665
    Abstract: An apparatus for monitoring a high voltage isolation in a vehicle. The apparatus comprising a power conversion device for receiving a high voltage on a power bus. The power conversion device is configured to control a first switch for enabling a first known resistance to receive the high voltage and to measure a first voltage between a first node and a ground in response to the first known resistance receiving the high voltage. The power conversion device is further configured to measure a second voltage between a second node and the ground in response to the first known resistance receiving the high voltage and to determine a first leakage resistance between the first node and the ground based on at least the first voltage and the second voltage. The first leakage resistance indicating whether the high voltage is isolated from the ground.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: May 17, 2016
    Assignee: Lear Corporation
    Inventors: George Kaminski, Richard J. Hampo
  • Patent number: 9341463
    Abstract: A measuring system having a first magnetic field sensor, an encoder, and an evaluation circuit. The first magnetic field sensor and the second magnetic field sensor and the third magnetic field sensor are connected to the encoder. The evaluation circuit has a logic, which is set up to determine the position of the encoder based on a first measurement signal of a first magnetic field sensor and a second measurement signal of a second magnetic field sensor and a third measurement signal of a third magnetic field sensor.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: May 17, 2016
    Assignee: Micronas GmbH
    Inventors: Joachim Ritter, Joerg Franke
  • Patent number: 9335370
    Abstract: Apparatus, method and computer program product for determining presence and relative magnitudes of on-chip AC coupling capacitors in a high-speed differential receiver device. A BIST method is employed to ultimately produce a dock count proportional to the fall time of a capacitor, and in the case of differential capacitors a difference in count values. Each capacitor path has a controllable first DAC current or voltage source. A second DAC current or voltage source, later in the data path and isolated from the capacitor node(s), is controlled to offset the voltage contribution of the charged and discharging capacitor. A count is recorded, starting when a capacitor charging current is shut off, and ends (the count) when the voltage of the charged capacitor falls below a threshold. A difference in count between the two data path capacitors is calculated and reported. A state machine operates the sequencing and control of the BIST.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: May 10, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Eugene Atwood, Matthew B. Baecher, John F. Bulzacchelli, Stanislav Polonsky
  • Patent number: 9335347
    Abstract: Disclosed herein is a cost effective, efficient, massively parallel multi-wafer test cell. Additionally, this test cell can be used for both single-touchdown and multiple-touchdown applications. The invention uses a novel “split-cartridge” design, combined with a method for aligning wafers when they are separated from the probe card assembly, to create a cost effective, efficient multi-wafer test cell. A “probe-card stops” design may be used within the cartridge to simplify the overall cartridge design and operation.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: May 10, 2016
    Assignee: ADVANTEST CORPORATION
    Inventors: John W. Andberg, Ira H. Leventhal, Matthew W. Losey, Yohannes Desta, Lakshmikanth Namburi, Vincent E. Lopopolo, Sanjeev Grover, Erik Volkerink
  • Patent number: 9329146
    Abstract: A cooperative source electromagnetic induction (EMI) device includes: a transmitter configured to generate a time-varying primary magnetic field in the vicinity of a target object, which magnetic field inductively couples with the target object to generate a target object secondary magnetic field; and a cooperative source to which the primary magnetic field is also inductively coupled, generating one or more respective cooperative source secondary magnetic fields. The target object and the cooperative source are inductively coupled via the target object secondary magnetic field and the cooperative source secondary magnetic field. The device includes a receiver configured to measure a composite inductive response, which comprises the inductive coupling of the target object and the cooperative source.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: May 3, 2016
    Inventors: Mark Everett, Alfonso Benavides Iglesias