Patents Examined by Phutthiwat Wongwian
  • Patent number: 11872860
    Abstract: A damper control apparatus for controlling a front damper at a front wheel and a rear damper at a rear wheel. The damper control apparatus includes: a preview sensor configured to detect a road surface state in front of a vehicle; a steering angle sensor configured to detect a steering angle of the vehicle; and a controller configured to control the front and rear dampers based on a detected value of the preview sensor. In response to the steering angle sensor detecting a steering angle that exceeds a predetermined steering angle threshold, the controller is configured to reduce control of the rear damper that is based on the detected value of the preview sensor.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: January 16, 2024
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Kazuya Konada, Takashi Yanagi, Ryosuke Yamazaki
  • Patent number: 11873751
    Abstract: A system including a pump fluidly connected to a fluid reservoir, the pump configured to direct diesel exhaust fluid (DEF) from the fluid reservoir to an injector fluidly connected to the pump via a flow line. The system also includes a first pressure sensor configured to determine fluid pressure at a first location in the flow line between the pump and the injector and a second pressure sensor configured to determine fluid pressure at a second location in the flow line between the pump and the injector. The system further includes an air source coupled to the injector via an air flow line, the air source configured to direct air to the injector via the air flow line and a controller communicatively coupled to the first pressure sensor, the second pressure sensor, and the air source, the controller configured to diagnose the system.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: January 16, 2024
    Assignee: Caterpillar Inc.
    Inventors: Steven Paul Byrne, Shivsinh Hitendrasinh Parmar, Hrishi Lalit Shah
  • Patent number: 11865611
    Abstract: A production method for a component having integrated channels for internal fluid guidance, having a first region, which is connected to a second region, and wherein the channels extend both through the first region and through the second region. The geometry of the component is modified to the technological characteristics of both production methods. The first region is produced by a method for casting using lost models without undercuts, and proceeding from the first region, the second region is built up using an additive manufacturing method.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: January 9, 2024
    Assignee: Siemens Energy Global GmbH & Co. KG
    Inventors: Sören Fenske, Thorsten Mattheis, Martin Schäfer
  • Patent number: 11867134
    Abstract: The internal-combustion-engine control apparatus has an intake-air-temperature correction control apparatus including a first-order advance compensation means that calculates an advance-compensation amount for an intake-air temperature detection signal, a time constant determination means that calculates a time constant of the first-order advance compensation means, and a first-order delay compensation means that receives a calculation value of the first-order advance compensation means; the time constant determination means includes a time constant setting means that sets a time constant, based on an intake-air flow rate detection signal, an upper-limit-value setting means that sets an upper limit value of the time constant calculated by the time constant determination means, and a minimum value selection means that selects and outputs a minimum value of a time constant set by the time constant setting means and the upper limit value set by the upper-limit-value setting means.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: January 9, 2024
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Nakajima, Takayuki Gamahara, Shinichiro Hidaka
  • Patent number: 11867142
    Abstract: A multi-fuel injector assembly in one embodiment includes a first fuel injector assembly to deliver a first type of fuel and a second fuel delivery system to deliver a second type of fuel. The first fuel injector includes a first nozzle, at least one first needle, and at least one first actuator configured to move the at least one first needle. The at least one first actuator moves the at least one first needle to a first fuel delivery configuration that corresponds to a first fuel mixture composition, and a second fuel delivery configuration that corresponds to a second fuel mixture composition.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: January 9, 2024
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Victor Manuel Salazar, Adam Edgar Klingbeil, Pradheepram Ottikkutti
  • Patent number: 11869287
    Abstract: An abnormality detection device determines abnormality in an exhaust gas sensor, disposed in an exhaust passage of an engine to detect a component in exhaust gas. The abnormality detection device includes: a responsiveness determination unit configured to calculate responsiveness of the exhaust gas sensor on the basis of a timewise change of output values of the exhaust gas sensor; and an abnormality determination unit configured to determine that the exhaust gas sensor has abnormality when the responsiveness calculated by the responsiveness determination unit is lower than a predetermined responsiveness threshold. The abnormality determination unit determines if the exhaust gas sensor has abnormality, excluding an excluded period during which a slope of the output values becomes zero or is inversed with respect to a preceding trend of the timewise change while the output values of the exhaust gas sensor timewisely change between a predetermined first and second determination values.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: January 9, 2024
    Inventors: Sayaka Gotou, Kenichi Jino, Kouta Suzuki
  • Patent number: 11858497
    Abstract: Systems and methods of controlling a vehicle in a stable drift are provided. With the goal of enhancing the driver experience, the disclosed drift control systems provide an interactive drift driving experience for the driver of a vehicle. In some embodiments, a driver is allowed to take manual control of a vehicle after a stable drift is initiated. For safety reasons, an assisted driving system may provide corrective assistance to prevent the vehicle from entering an unstable/unsafe drift. In other embodiments, an autonomous driving system retains control of the vehicle throughout the drift. However, the driver may perform “simulated drift maneuvers” such as counter-steering, and clutch kicking in order to communicate their desire to drift more or less aggressively. Accordingly, the autonomous driving system will effectuate the driver's communicated desire in a manner that keeps the vehicle in a safe/stable drift.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: January 2, 2024
    Assignee: TOYOTA RESEARCH INSTITUTE, INC.
    Inventors: Avinash Balachandran, Yan Ming Jonathan Goh, John Subosits, Michael Thompson, Alexander R. Green
  • Patent number: 11859590
    Abstract: A battery pack for use in providing starting power for a starter motor of an internal combustion engine and to supply power to one or more auxiliary loads. The battery pack includes an outer housing that encloses a plurality of battery cells. The battery pack further includes a control module. The control module includes a processing circuit configured to control one or more functions associated with the internal combustion engine and an interface circuit configured to interface with the internal combustion engine.
    Type: Grant
    Filed: May 24, 2022
    Date of Patent: January 2, 2024
    Assignee: Briggs & Stratton, LLC
    Inventor: Robert Koenen
  • Patent number: 11859626
    Abstract: Examples described herein provide a computer-implemented method that includes receiving training data indicative of incipient compressor surge for cabin air compressors. The method further includes generating, using the training data, a training spectrogram. The method further includes training, by a processing system, a machine learning model to detect incipient compressor surge events for the cabin air compressors using the spectrogram. The method further includes receiving, at a microcontroller associated with a cabin air compressor, operating data associated with the cabin air compressor. The method further includes generating, at the microcontroller and using the operating data, an operating spectrogram. The method further includes detecting, by the microcontroller associated with the cabin air compressor, an incipient compressor surge event by applying the machine learning model to the operating spectrogram.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: January 2, 2024
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventor: Manupriya Singh
  • Patent number: 11859573
    Abstract: An interface circuit assembly for use with an electronic control unit and oxygen sensor of an internal combustion engine. The assembly includes an input port coupled to receive a signal from the oxygen sensor and a processing unit coupled with the input port. The processing unit increases the signal to an output voltage as a function of hydrogen being provided to the internal combustion engine. An output port is coupled with the processing unit and provides the output voltage to the electronic control unit.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: January 2, 2024
    Assignee: Applied Resonance Technology LLC
    Inventor: Michael Manford Beckman
  • Patent number: 11859572
    Abstract: A fuel injection control device according to an embodiment is a device for controlling fuel injection performed by a fuel injection device disposed in a cylinder of a two-stroke engine, comprising: a scavenging and exhaust gas state quantity acquisition part configured to acquire a parameter related to a state quantity of scavenging and exhaust gas in the cylinder; a swirl momentum calculation part configured to calculate a momentum of swirl generated in the cylinder on the basis of the parameter; and a fuel injection pressure calculation part configured to calculate an injection pressure of fuel from the fuel injection device corresponding to the momentum of swirl calculated by the swirl momentum calculation part.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: January 2, 2024
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kengo Tanaka, Takashi Ueda, Yuki Koshiba, Sigetoshi Sugata
  • Patent number: 11859526
    Abstract: Subject of the invention is an exhaust gas purification system for a gasoline engine, comprising in consecutive order the following devices: a first three-way-catalyst (TWC1), a gasoline particulate filter (GPF) and a second three-way-catalyst (TWC2), wherein the platinum-group metal concentration (PGM) of the GPF is at least 40% greater than the PGM of the TWC2, wherein the PGM is determined in g/ft3 of the volume of the device, The invention also relates to methods in which the system is used and uses of the system.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: January 2, 2024
    Assignee: UMICORE AG & CO. KG
    Inventors: Jan Schoenhaber, Joerg-Michael Richter, Carolin Braun
  • Patent number: 11859519
    Abstract: An engine brake rocker arm assembly for a valvetrain and operable in an engine drive mode and an engine braking mode. The assembly is configured to selectively open one of first and second exhaust valves in the engine braking mode and includes a brake rocker arm configured to rotate about a rocker shaft, and an engine brake capsule assembly movable between (i) a locked position configured to perform an engine braking operation, and (ii) an unlocked position that does not perform the engine braking operation. A lash setting tool is configured to removably engage the engine brake capsule assembly and move the engine brake capsule to the locked position to enable mechanical lash adjustment while the brake rocker arm is assembled in a valvetrain and the engine brake capsule is assembled in the brake rocker arm.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: January 2, 2024
    Assignee: EATON INTELLIGENT POWER LIMITED
    Inventors: James R. Sheren, Andrei Radulescu
  • Patent number: 11859587
    Abstract: A method for starting an internal combustion engine and a motor vehicle are provided. The internal combustion engine includes a plurality of cylinders. To start the internal combustion engine while deactivated, a predefined amount of working gas is introduced into the cylinder that fires first. A crankshaft of the internal combustion engine is driven by an electric motor and by the movement of a piston coupled to the crankshaft and associated with the cylinder that fires first to introduce the predefined amount of working gas. Subsequently, the internal combustion engine is started by the ignition of a mixture including the predefined amount of working gas and a predefined amount of fuel inside the cylinder that fires first.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: January 2, 2024
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Kilian Ludwiczek
  • Patent number: 11851048
    Abstract: A control apparatus for a hybrid electric vehicle including an engine, a starter and an electric motor that is connected to an electric storage device through a relay. The control apparatus executes an engine start control to crank and start the engine by using a selected one of the starter and the electric motor. The control apparatus detects presence or absence of failure of the electric motor, when executing the engine start control by using the electric motor with the relay being closed. When detecting the failure of the electric motor, the control apparatus causes the relay to be opened, and to suspend execution of the engine start control by using the electric motor, and is configured, when start of the engine is requested next, to execute the engine start control by using the starter while keeping the relay to be opened.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: December 26, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroki Sato
  • Patent number: 11852096
    Abstract: The present disclosure relates to a method for operating a combustion engine. A main amount of gas fuel is fed via a pre-chamber into a main combustion chamber. An ignition quantity of gas fuel is fed into the pre-chamber before the piston reaches the upper dead center to form an air-gas fuel mixture in the pre-chamber, which is fatter than in the main combustion chamber. The air-gas fuel mixture in the pre-chamber ignites itself. The air-gas fuel mixture in the main combustion chamber ignites through the self-ignited air-gas fuel mixture in the pre-chamber.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: December 26, 2023
    Assignee: MAN Truck & Bus SE
    Inventors: Thomas Malischewski, Bruno Barciela Díaz-Blanco
  • Patent number: 11851192
    Abstract: An environmental control system of an aircraft includes a plurality of inlets for receiving a plurality of mediums including a first medium and a second medium and an outlet for delivering a conditioned flow of the second medium to one or more loads of the aircraft. A ram air circuit includes a ram air shell having at least one heat exchanger positioned therein. A compressing device is arranged in fluid communication with the ram air circuit and the outlet. The compressing device including a first compressor, a second compressor, and at least one turbine operably coupled via a shaft. The first compressor and the second compressor are arranged in parallel with respect to a flow of the second medium and the first medium is used as a heat sink by another component within the environmental control system.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: December 26, 2023
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Louis J. Bruno, Tony Ho, Aiden Coutin
  • Patent number: 11851196
    Abstract: Aircraft electric motors are described. The electric motors include an annular rotor sleeve having an inner wall, a connecting wall, and an outer wall, wherein the inner wall, the connecting wall, and the outer wall define a U-shaped channel configured to receive a U-shaped magnet structure and a sleeve inner cavity defined radially inward from the inner wall, a hub connector extending radially inward from the inner wall into the sleeve inner cavity, a hub arranged in the sleeve inner cavity and fixedly connected to the hub connector, wherein the hub is configured to rotate with rotation of the rotor sleeve, and a U-shaped magnet structure arranged within the U-shaped channel of the rotor sleeve. At least one of the rotor sleeve, the hub connector, and the hub are formed from a composite material.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: December 26, 2023
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Jagadeesh Kumar Tangudu, Andrzej Ernest Kuczek, Wenping Zhao
  • Patent number: 11846260
    Abstract: A method for retrofitting an operating fuel delivery system of a vehicle. The method includes obtaining a vehicle having an operating fuel delivery system, which includes an interconnected fuel tank, a fuel pump and an engine. Obtaining an air separator configured to be attached to the fuel delivery system at a connection point wherein the fuel pump and the engine are in direct fluidic communication and also obtaining attachment means for connecting the air separator to the fuel delivery system by fluidically mounting the air separator at the connection point wherein the fuel pump and the engine are secured in direct fluidic communication.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: December 19, 2023
    Assignee: CD PATENTS, LLC
    Inventor: Charles L Ekstam
  • Patent number: 11846244
    Abstract: A method for operating an injection valve by ascertaining an opening time and/or closing time of the injection valve on the basis of a sensor signal. The method includes: providing an analysis point time series by sampling a sensor signal of a sensor of the injection valve; using a nonlinear, data-based first submodel in order to obtain a first model output on the basis of the analysis point time series; using a linear, data-based second submodel in order to obtain a second model output on the basis of the analysis point time series; ascertaining the opening time and/or closing time as a function of the first and second model outputs.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: December 19, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Andreas Hopf, Erik Tonner, Frank Kowol, Jens-Holger Barth, Konrad Groh, Matthias Woehrle, Mona Meister, Roland Norden