Patents Examined by Quovaunda Jefferson
  • Patent number: 11824077
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes an epitaxial structure having a group IV chemical element disposed in a semiconductor substrate, where the epitaxial structure extends into the semiconductor substrate from a first side of the semiconductor substrate. A photodetector is at least partially arranged in the epitaxial structure. A first capping structure having a first capping structure chemical element that is different than the first group IV chemical element covers the epitaxial structure on the first side of the semiconductor substrate. A second capping structure is arranged between the first capping structure and the epitaxial structure, where the second capping structure includes the group IV chemical element and the first capping structure chemical element.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chun Liu, Chung-Yi Yu, Eugene Chen
  • Patent number: 11824105
    Abstract: To reduce defects in an oxide semiconductor film in a semiconductor device. To improve the electrical characteristics and the reliability of a semiconductor device including an oxide semiconductor film. In a semiconductor device including a transistor including a gate electrode formed over a substrate, a gate insulating film covering the gate electrode, a multilayer film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the multilayer film, a first oxide insulating film covering the transistor, and a second oxide insulating film formed over the first oxide insulating film, the multilayer film includes an oxide semiconductor film and an oxide film containing In or Ga, the first oxide insulating film is an oxide insulating film through which oxygen is permeated, and the second oxide insulating film is an oxide insulating film containing more oxygen than that in the stoichiometric composition.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: November 21, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Yukinori Shima, Hajime Tokunaga, Toshinari Sasaki, Keisuke Murayama, Daisuke Matsubayashi
  • Patent number: 11823960
    Abstract: A semiconductor structure and a method for forming the same are provided. The method includes forming a first protruding structure, a second protruding structure, and a third protruding structure over a substrate. The method also includes performing a depositing process to form a first insulation material layer between the first protruding structure and the second protruding structure. The method further includes performing a first insulation material conversion process onto the first insulation material layer to bend the first protruding structure and the second protruding structure toward opposite directions.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Han-Pin Chung, Chih-Tang Peng, Tien-I Bao
  • Patent number: 11817313
    Abstract: Exemplary deposition methods may include forming a plasma of a silicon-containing precursor and at least one additional precursor within a processing region of a semiconductor processing chamber. The processing region may house a semiconductor substrate on a substrate support. The methods may include depositing material on the semiconductor substrate to a target thickness. The methods may include halting delivery of the silicon-containing precursor while maintaining the plasma with the one or more precursors. The methods may include purging the processing region of the semiconductor processing chamber.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: November 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Madhu Santosh Kumar Mutyala, Sanjay Kamath, Deenesh Padhi
  • Patent number: 11810945
    Abstract: A method of making a semiconductor device includes etching a substrate to define a first trench and a second trench. The method further includes depositing a first number M of capacitor layer pairs in the first trench, wherein each of the first number M of capacitor layer pairs includes a first dielectric layer, and a first conductive layer. The method further includes depositing a second number N of capacitor layer pairs in the second trench, wherein the second number N is different from the first number M, and each of the second number N of capacitor layer pairs includes a second dielectric layer, and a second conductive layer. The method further includes planarizing the first number M of capacitor layer pairs and the second number N of capacitor layer pairs to expose the substrate.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: November 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tao-Cheng Liu, Shih-Chi Kuo, Tsai-Hao Hung, Tsung-Hsien Lee
  • Patent number: 11804376
    Abstract: A substrate processing method for area selective deposition includes providing a substrate containing a first film, a second film, and a third film, forming a first blocking layer on the first film, forming a second blocking layer on the second film, where the second blocking layer is different from the first blocking layer, and selectively forming a material film on the third film. In one example, the first film contains a metal film, second film contains a metal-containing liner that surrounds the metal film, and the third film includes a dielectric film that surrounds the metal-containing liner.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: October 31, 2023
    Assignee: Tokyo Electron Limited
    Inventor: Kandabara N. Tapily
  • Patent number: 11798838
    Abstract: Embodiments herein describe techniques for a semiconductor device including a carrier wafer, and an integrated circuit (IC) formed on a device wafer bonded to the carrier wafer. The IC includes a front end layer having one or more transistors at front end of the device wafer, and a back end layer having a metal interconnect coupled to the one or more transistors. One or more gaps may be formed by removing components of the one or more transistors. Furthermore, the IC includes a capping layer at backside of the device wafer next to the front end layer of the device wafer, filling at least partially the one or more gaps of the front end layer. Moreover, the IC includes one or more air gaps formed within the one or more gaps, and between the capping layer and the back end layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: October 24, 2023
    Assignee: Intel Corporation
    Inventors: Ehren Mannebach, Aaron Lilak, Rishabh Mehandru, Hui Jae Yoo, Patrick Morrow, Kevin Lin
  • Patent number: 11798846
    Abstract: The present disclosure provides embodiments of a semiconductor device. In one embodiment, the semiconductor device includes a gate structure, a source/drain feature adjacent the gate structure, a first dielectric layer over the source/drain feature, an etch stop layer over the gate structure and the first dielectric layer, a second dielectric layer over the etch stop layer, a source/drain contact that includes a first portion extending through the first dielectric layer and a second portion extending through the etch stop layer and the second dielectric layer, a metal silicide layer disposed between the second portion and etch stop layer, and a metal nitride layer disposed between the first portion and the first dielectric layer.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Hsuan Lin, Xi-Zong Chen, Chih-Teng Liao
  • Patent number: 11784279
    Abstract: There are provided a method for producing a photovoltaic element with stabilised efficiency, and a device which may be used to carry out the method, for example in the form of a specially adapted continuous furnace. A silicon substrate to be provided with an emitter layer and electrical contacts is thereby subjected to a stabilisation treatment step. In that step, hydrogen, for example from a hydrogenated silicon nitride layer, is introduced into the silicon substrate, for example within a zone (2) of maximum temperature. The silicon substrate may then purposively be cooled rapidly in a zone (3) in order to avoid hydrogen effusion. The silicon substrate may then purposively be maintained, for example in a zone (4), within a temperature range of from 230° C. to 450° C. for a period of, for example, at least 10 seconds. The previously introduced hydrogen may thereby assume an advantageous bond state.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: October 10, 2023
    Assignee: UNIVERSITÄT KONSTANZ
    Inventors: Axel Herguth, Svenja Wilking
  • Patent number: 11776862
    Abstract: The present disclosure relates to a semiconductor device package, which includes a carrier, a lid, a first adhesive layer and a constraint structure. The carrier includes a surface and a first conductive pad on the surface of the carrier. The lid includes a first portion and a second portion separated from the first portion on the surface of the carrier. The first conductive pad is disposed between the first portion of the lid and the surface of the carrier. The first adhesive layer includes a first portion between the first portion of the lid and the first conductive pad. The constraint structure surrounds the first adhesive layer.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: October 3, 2023
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Chun-Han Chen, Hsun-Wei Chan, Mei-Yi Wu
  • Patent number: 11776880
    Abstract: A surface treatment and an apparatus for semiconductor packaging are provided. A surface of a conductive layer is treated to create a roughened surface. In one example, nanowires are formed on a surface of the conductive layer. In the case of a copper conductive layer, the nanowires may include a CuO layer. In another example, a complex compound is formed on a surface of the conductive layer. The complex compound may be formed using, for example, thiol and trimethyl phosphite.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: October 3, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Horng Chang, Jie-Cheng Deng, Tin-Hao Kuo, Ying-Yu Chen
  • Patent number: 11776813
    Abstract: The present disclosure provides a method for preparing a semiconductor device structure with fine patterns at different levels. The method includes forming a hard mask material over a substrate; etching the hardmask material to form hard mask pillars; forming spacers over sidewall surfaces of the hard mask pillars; etching the hard mask pillars and the target material by using the spacers as a mask to integrally forming a plurality of target structures, a high-level recesses in one of the plurality of target structures and a low-level recess between two target structures; and integrally forming a high-level conductive pattern in the high-level conductive pattern and a low-level conductive pattern in the low-level recess.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: October 3, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Cheng-Hsiang Fan
  • Patent number: 11764057
    Abstract: A method of forming a structure having a coating layer includes the following steps: providing a substrate; coating a fluid on the surface of the substrate, where the fluid includes a carrier and a plurality of silicon-containing nanoparticles; and performing a heating process to remove the carrier and convert the silicon-containing nanoparticles into a silicon-containing layer, a silicide layer, or a stack layer including the silicide layer and the silicon-containing layer.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: September 19, 2023
    Assignee: CHE Inc.
    Inventors: Chuan-Pu Liu, Yin-Wei Cheng, Shih-An Wang, Bo-Liang Peng, Chun-Hung Chen, Jun-Han Huang, Yi-Chang Li
  • Patent number: 11749564
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component) obtained using directional etching to remove predetermined portions of a seed layer covering the substrate. In several embodiments, directional etching followed by selective deposition can enable fill material (e.g., metal) patterning in tight spaces without any voids or seams. Void-free material depositions may be used in a variety of semiconductor devices, such as transistors, dual work function stacks, dynamic random-access memory (DRAM), non-volatile memory, and the like.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: September 5, 2023
    Assignee: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Kelvin Chan, Shantanu Kallakuri, Sony Varghese, John Hautala
  • Patent number: 11751416
    Abstract: A display device including a display panel having a first surface and a second surface opposite to the first surface, a guide structure disposed on the first surface of the display panel, and a window disposed on the second surface of the display panel, in which the guide structure includes a guide film configured to apply a preliminary pressure to the display panel, and a cover panel disposed between the guide film and the display panel, the cover panel including a cushion layer.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: September 5, 2023
    Assignee: Samsung Display Co., LTD.
    Inventors: Eunjoong Mun, Hyung-Don Na, Dong Yeon Lee, Jungkyu Jo, Hyeon Deuk Hwang
  • Patent number: 11749185
    Abstract: A display device including a display panel, in which a display region including a plurality of organic light emitting devices and a non-display region adjacent to the display region are defined, a protection film disposed below the display panel, a first adhesive layer contacting a bottom surface of the protection film, a supporting layer comprising a metallic material, at least overlapping the entire display region, and contacting the first adhesive layer, an input-sensing unit disposed on the display panel, an anti-reflection unit disposed on the input-sensing unit, and a window panel disposed on the input-sensing unit.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: September 5, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seongsik Ahn, Gyunsoo Kim, Minki Kim, Jeongjin Kim, Soon-Sung Park
  • Patent number: 11742210
    Abstract: The present disclosure provides a method to enlarge the process window for forming a source/drain contact. The method may include receiving a workpiece that includes a source/drain feature exposed in a source/drain opening defined between two gate structures, conformally depositing a dielectric layer over sidewalls of the source/drain opening and a top surface of the source/drain feature, anisotropically etching the dielectric layer to expose the source/drain feature, performing an implantation process to the dielectric layer, and after the performing of the implantation process, performing a pre-clean process to the workpiece. The implantation process includes a non-zero tilt angle.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: August 29, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Meng-Han Chou, Kuan-Yu Yeh, Wei-Yip Loh, Hung-Hsu Chen, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11735431
    Abstract: In a pattern formation method, a first organic film is formed on a film to be etched and contains a metal. A second organic film is formed on the first organic film, and has a higher density than a density of the first organic film. The first and second organic films are patterned to form a mask, and the film to be etched is etched using the mask.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: August 22, 2023
    Assignee: KIOXIA CORPORATION
    Inventor: Yusuke Kasahara
  • Patent number: 11735420
    Abstract: Methods of depositing a film selectively onto a first material relative to a second material are described. The substrate is pre-cleaned by heating the substrate to a first temperature, cleaning contaminants from the substrate and activating the first surface to promote formation of a self-assembled monolayer (SAM) on the first material. A SAM is formed on the first material by repeated cycles of SAM molecule exposure, heating and reactivation of the first material. A final exposure to the SAM molecules is performed prior to selectively depositing a film on the second material. Apparatus to perform the selective deposition are also described.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: August 22, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Chang Ke, Lei Zhou, Biao Liu, Cheng Pan, Yuanhong Guo, Liqi Wu, Michael S. Jackson, Ludovic Godet, Tobin Kaufman-Osborn, Erica Chen, Paul F. Ma
  • Patent number: 11735415
    Abstract: A first main surface is a (000-1) plane or a plane inclined by an angle of less than or equal to 8° relative to the (000-1) plane. A reaction chamber has a cross-sectional area of more than or equal to 132 cm2 and less than or equal to 220 cm2 in a plane perpendicular to a direction of movement of a mixed gas. When an X axis indicates a first value and a Y axis indicates a second value, the first value and the second value fall within a hexagonal region surrounded by first coordinates, second coordinates, third coordinates, fourth coordinates, fifth coordinates and sixth coordinates in XY plane coordinates, where the first coordinates are (0.038, 0.0019), the second coordinates are (0.069, 0.0028), the third coordinates are (0.177, 0.0032), the fourth coordinates are (0.038, 0.0573), the fifth coordinates are (0.069, 0.0849), and the sixth coordinates are (0.177, 0.0964).
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: August 22, 2023
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takaya Miyase, Keiji Wada