Patents Examined by Rodney McDonald
  • Patent number: 9103022
    Abstract: The present disclosure relates to an amorphous aluminum alloy coating. The aluminum alloy coating may specifically include one of cerium, cobalt and/or molybdenum as alloying elements and be applied by a physical vapor deposition process to a desired thickness. The coating may supply improved corrosion resistance to a given environmental condition.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: August 11, 2015
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventors: Ronghua Wei, Marta Jakab, Craig Engel
  • Patent number: 9095901
    Abstract: An FePt-based sputtering target has a structure in which an FePt-based alloy phase, a C phase containing unavoidable impurities, and a metal oxide phase containing unavoidable impurities are mutually dispersed, the FePt-based alloy phase containing Pt in an amount of 40 at % or more and 60 at % or less with the balance being Fe and unavoidable impurities, wherein C is contained in an amount of more than 0 vol % and 20 vol % or less based on the total amount of the target, the metal oxide is contained in an amount of 10 vol % or more and less than 40 vol % based on the total amount of the target, and the total content of C and the metal oxide is 20 vol % or more and 40 vol % or less based on the total amount of the target.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: August 4, 2015
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Takanobu Miyashita, Yasuyuki Goto, Takamichi Yamamoto, Ryousuke Kushibiki, Masahiro Aono, Masahiro Nishiura
  • Patent number: 9093251
    Abstract: The present invention concerns a sputtering magnetron assembly comprising a rotatable tubular target cathode and a magnetic field generating device installed within the tubular target cathode. At least part of the magnetic field generating device is configured to move within the tubular target cathode so as to maintain within a predetermined range a magnetic field strength at an outer surface of the tubular target cathode during erosion of said outer surface. The present invention also relates to a physical vapour deposition method using such a sputtering magnetron assembly.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: July 28, 2015
    Assignee: TOYOTA MOTOR EUROPE NV/SA
    Inventor: Premendra
  • Patent number: 9090974
    Abstract: An electronic device manufacturing method includes a first step of moving a substrate holder close to a first shield member and locating a first projecting portion formed on the first shield member and having a ring shape and a second projecting portion having a ring shape and formed on a second shield member installed on the surface of the substrate holder at the outer peripheral portion of a substrate at a position to engage with each other in a noncontact state, a second step of, after the first step, sputtering a target while maintaining the first projecting portion and the second projecting portion at the position to engage with each other in the noncontact state, and a third step of, after the second step, setting the first shield member in an open state and sputtering the target to perform deposition on the substrate.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: July 28, 2015
    Assignee: Canon Anelva Corporation
    Inventors: Nobuo Yamaguchi, Kazuaki Matsuo
  • Patent number: 9085820
    Abstract: Provided is a substrate processing apparatus including an openable and closable lid and being capable of precisely controlling a gap between multiple shields. The substrate processing apparatus includes: an openable and closable lid provided on an opening of a chamber; a first shield provided on a surface of the lid at the chamber side and having an insertion hole; an insertion section fixed to the lid while inserted through the insertion hole, and configured to support the first shield in a manner movable within a predetermined distance; a restriction section provided on an end portion of the insertion section and configured to restrict the movement of the first shield; and biasing means configured to bias the first shield to a member provided inside the chamber when the lid is closed.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: July 21, 2015
    Assignee: CANON ANELVA CORPORATION
    Inventors: Toshikazu Nakazawa, Norihito Tsukamoto, Keisuke Ueda, Eiji Ozaki
  • Patent number: 9087679
    Abstract: Embodiments of the invention generally relate to a grounding kit for a semiconductor processing chamber, and a semiconductor processing chamber having a grounding kit. More specifically, embodiments described herein relate to a grounding kit which creates an asymmetric grounding path selected to significantly reduce the asymmetries caused by an off center RF power delivery.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: July 21, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Muhammad M. Rasheed, Rongjun Wang, Thanh X. Nguyen, Alan A. Ritchie
  • Patent number: 9062372
    Abstract: A DC magnetron sputter reactor for sputtering deposition materials such as tantalum and tantalum nitride, for example, and its method of use, in which self-ionized plasma (SIP) sputtering and capacitively coupled plasma (CCP) sputtering are promoted, either together or alternately, in the same chamber. Also, bottom coverage may be thinned or eliminated by inductively-coupled plasma (ICP) resputtering. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. CCP is provided by a pedestal electrode which capacitively couples RF energy into a plasma. The CCP plasma is preferably enhanced by a magnetic field generated by electromagnetic coils surrounding the pedestal which act to confine the CCP plasma and increase its density.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 23, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Praburam Gopalraja, Jianming Fu, Xianmin Tang, John C. Forster, Umesh Kelkar
  • Patent number: 9062371
    Abstract: A sputtering target-backing plate assembly obtained by bonding a target material of Mg to a backing plate of Cu—Cr alloy, wherein the target material and the backing plate are bonded via a layer of Ni or an alloy comprising Ni as a main component at the interface therebetween. An object of the present invention is to provide a sputtering target-backing plate assembly that is used when magnesium (Mg) is the sputtering target material, and to resolve problems inherent in magnesium (Mg) and problems related to the selection of a backing plate to be compatible with magnesium by improving the bonding strength between the target and the backing plate in order to improve the sputtering efficiency.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: June 23, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yoshimasa Koido
  • Patent number: 9051646
    Abstract: A sputtering target is provided which ensures the production of unvaryingly homogenous layers of the sputtering material during the lifespan of the sputtering target. The sputtering target includes a mixture of oxides of indium, zinc, and gallium, the mixture containing at least one ternary mixed oxide of indium, zinc, and gallium and at least one amorphous phase. The portion of ternary mixed oxides of indium, zinc, and gallium is at least 50 weight percent, relative to the total weight of the mixture, and the portion of amorphous phase is at least 20 weight percent, relative to the total weight of the mixture.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: June 9, 2015
    Assignee: Heraeus Deutschland GmbH & Co. KG
    Inventors: Andreas Herzog, Sabine Schneider-Betz, Martin Schlott, Christoph Stahr
  • Patent number: 9039871
    Abstract: Methods and apparatus for applying pulsed DC power to a plasma processing chamber are disclosed. In some implementations, frequency of the applied power is varied to achieve desired processing effects such as deposition rate, arc rate, and film characteristics. In addition, a method and apparatus are disclosed that utilize a relatively high potential during a reverse-potential portion of a particular cycle to mitigate possible nodule formation on the target. The relative durations of the reverse-potential portion, a sputtering portion, and a recovery portion of the cycle are adjustable to effectuate desired processing effects.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: May 26, 2015
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Kenneth E. Nauman, Kenneth Finley, Skip B. Larson, Doug Pelleymounter
  • Patent number: 9034155
    Abstract: Provided is an inorganic-particle-dispersed sputtering target in which inorganic particles are dispersed in a Co base material, wherein the inorganic particles have an electric resistivity of 1×101 ?·m or less and the volume ratio of the inorganic particles in the target is 50% or less. The sputtering target thus adjusted is advantageous in that, when sputtering is performed using a magnetron sputtering device comprising a DC power source, the inorganic particles are less charged, and arcing occurs less frequently. Accordingly, by using the sputtering target of the present invention, the occurrence of particles attributable to the arcing reduces, and a significant effect of improving the yield in forming a thin film is obtained.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: May 19, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Atsushi Sato, Yuichiro Nakamura
  • Patent number: 9034156
    Abstract: Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: May 19, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Yun-Mo Chung, Dong-Hyun Lee, Kil-Won Lee, Jae-Wan Jung, Jong-Ryuk Park, Bo-Kyung Choi, Won-Bong Baek, Byung-Soo So, Jong-Won Hong, Min-Jae Jeong, Heung-Yeol Na, Ivan Maidanchuk, Eu-Gene Kang, Seok-Rak Chang
  • Patent number: 9034150
    Abstract: An apparatus and associated method are generally described as a thin film exhibiting a tuned anisotropy and magnetic moment. Various embodiments may form a magnetic layer that is tuned to a predetermined anisotropy and magnetic moment through deposition of a material on a substrate cooled to a predetermined substrate temperature.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: May 19, 2015
    Assignee: Seagate Technology LLC
    Inventors: Venkateswara Rao Inturi, Wei Tian, Joseph Mundenar
  • Patent number: 9017524
    Abstract: A vacuum film formation method for forming at least one inorganic layer on a support, which comprise transporting a support of which the area of the surface to be coated with an inorganic layer formed thereon is a (unit: cm2) into a first vacuum tank having a capacity of at most 100a (unit: cm3) under atmospheric pressure, degassing the first vacuum tank into a vacuum, transporting the support from the first vacuum tank to a second vacuum tank while the vacuum condition is kept as such, and forming at least one inorganic layer on the support in the second vacuum tank.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: April 28, 2015
    Assignee: FUJIFILM Corporation
    Inventor: Naoki Tsukamoto
  • Patent number: 9011652
    Abstract: A rotary sputtering target bonded to a backing tube such that the bonding material is applied only proximate the ends of the rotary sputtering target and is also between the target and the backing tube to form a gap between the rotary sputtering target and the backing tube and a device for bonding a rotary sputtering target to a backing tube.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: April 21, 2015
    Assignee: Materion Advanced Material Technologies and Services Inc.
    Inventors: George Michael Wityak, Luther Wilburn Cox
  • Patent number: 9005407
    Abstract: A method of fabricating a composite field emission source is provided. A first stage of film-forming process is performed by using RF magnetron sputtering, so as to form a nano structure film on a substrate, in which the nano structure film is a petal-shaped structure composed of a plurality of nano graphite walls. Afterward, a second stage of film-forming process is performed for increasing carbon accumulation amount on the nano structure film and thereby growing a plurality of nano coral-shaped structures on the petal-shaped structure. Therefore, the composite field emission source with high strength and nano coral-shaped structures can be obtained, whereby improving the effect and life of electric field emission.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: April 14, 2015
    Assignees: Tatung Company, Tatung University
    Inventors: Jian-Min Jeng, Jyi-Tsong Lo, Wen-Ching Shih, Wei-Lung Tasi
  • Patent number: 8999121
    Abstract: The present invention provides a sputtering apparatus and a film-forming method capable of forming a magnetic film having a reduced variation in the orientation of the magnetic anisotropy. The sputtering apparatus of the present invention is equipped with a rotatable cathode and a rotatable stage. The stage can have an electrostatic chuck. Moreover, the stage may electrically be connected with a bias power source capable of applying a bias voltage to the stage. Furthermore, the stage may have the electrostatic chuck and electrically be connected with the bias power source.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Canon Anelva Corporation
    Inventors: Kyosuke Sugi, Tetsuya Endo, Einstein Noel Abarra
  • Patent number: 8992744
    Abstract: A method of fabricating by co-sputtering deposition a lanthanoid aluminate film with enhanced electrical insulativity owing to suppression of deviation in composition of the film is disclosed. Firstly within a vacuum chamber, hold two separate targets, one of which is made of lanthanoid aluminate (LnAlO3) and the other of which is made of aluminum oxide (Al2O3). Then, transport and load a substrate into the vacuum chamber. Next, introduce a chosen sputtering gas into this chamber. Thereafter, perform sputtering of both the targets at a time to thereby form a lanthanoid aluminate film on the substrate surface. This film is well adaptable for use as ultra-thin high dielectric constant (high-k) gate dielectrics in highly miniaturized metal oxide semiconductor (MOS) transistors.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: March 31, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsunehiro Ino, Akira Takashima
  • Patent number: 8992749
    Abstract: Provided is a sputtering apparatus which deposits a metal catalyst on an amorphous silicon layer at an extremely low concentration in order to crystallize amorphous silicon, and particularly minimizes non-uniformity of the metal catalyst caused by a pre-sputtering process without reducing process efficiency. This sputtering apparatus improves the uniformity of the metal catalyst deposited on the amorphous silicon layer at an extremely low concentration. The sputtering apparatus includes a process chamber having first and second regions, a metal target located inside the process chamber, a target transfer unit moving the metal target and having a first shield for controlling a traveling direction of a metal catalyst discharged from the metal target, and a substrate holder disposed in the second region to be capable of facing the metal target.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: March 31, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park, Yun-Mo Chung, Dong-Hyun Lee, Kil-Won Lee, Jae-Wan Jung, Jong-Ryuk Park, Bo-Kyung Choi, Won-Bong Baek, Byung-Soo So, Jong-Won Hong, Min-Jae Jeong, Heung-Yeol Na, Ivan Maidanchuk, Eu-Gene Kang, Seok-Rak Chang
  • Patent number: 8980066
    Abstract: The present invention generally relates to a semiconductor film and a method of depositing the semiconductor film. The semiconductor film comprises oxygen, nitrogen, and one or more elements selected from the group consisting of zinc, cadmium, gallium, indium, and tin. Additionally, the semiconductor film may be doped. The semiconductor film may be deposited by applying an electrical bias to a sputtering target comprising the one or more elements selected from the group consisting of zinc, cadmium, gallium, indium, and tin, and introducing a nitrogen containing gas and an oxygen containing gas. The sputtering target may optionally be doped. The semiconductor film has a mobility greater than amorphous silicon. After annealing, the semiconductor film has a mobility greater than polysilicon.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: March 17, 2015
    Assignee: Applied Materials, Inc.
    Inventor: Yan Ye