Patents Examined by Rudy Zervigon
  • Patent number: 11967501
    Abstract: Described herein is a technique capable of improving a film uniformity on a surface of a substrate and a film uniformity among a plurality of substrates including the substrate. According to one aspect thereof, there is provided a substrate processing apparatus including: a substrate retainer including: a product wafer support region, an upper dummy wafer support region and a lower dummy wafer support region; a process chamber in which the substrate retainer is accommodated; a first, a second and a third gas supplier; and an exhaust system. Each of the first gas and the third gas supplier includes a vertically extending nozzle with holes, wherein an upper of an uppermost hole and a lower end of a lowermost hole are arranged corresponding to an uppermost and a lowermost dummy wafer, respectively. The second gas supplier includes a nozzle with holes or a slit.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: April 23, 2024
    Assignee: Kokusai Electric Corporation
    Inventors: Hiroaki Hiramatsu, Shuhei Saido, Takuro Ushida
  • Patent number: 11959172
    Abstract: A gas delivery system includes a 2-port valve including a first valve located between a first port and a second port. A 4-port valve includes a first node connected to a first port and a second port. A bypass path is located between the third port and the fourth port. A second node is located along the bypass path. A second valve is located between the first node and the second node. A manifold block defines gas flow channels configured to connect the first port of the 4-port valve to a first inlet, configured to connect the second port of the 4-port valve to the first port of the 2-port valve, the third port of the 4-port valve to a second inlet, the second port of the 2-port valve to a first outlet, and the fourth port of the 4-port valve to a second outlet.
    Type: Grant
    Filed: May 12, 2023
    Date of Patent: April 16, 2024
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ramesh Chandrasekharan, Antonio Xavier, Frank Loren Pasquale, Ryan Blaquiere, Jennifer Leigh Petraglia, Meenakshi Mamunuru
  • Patent number: 11959868
    Abstract: Embodiments disclosed herein include gas concentration sensors, and methods of using such gas concentration sensors. In an embodiment, a gas concentration sensor comprises a first electrode. In an embodiment the first electrode comprises first fingers. In an embodiment, the gas concentration sensor further comprises a second electrode. In an embodiment, the second electrode comprises second fingers that are interdigitated with the first fingers.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: April 16, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xiaopu Li, Kallol Bera, Yaoling Pan, Kelvin Chan, Amir Bayati, Philip Allan Kraus, Kenric T. Choi, William John Durand
  • Patent number: 11955319
    Abstract: Provided is a processing chamber configured to contain a semiconductor substrate in a processing region of the chamber. The processing chamber includes a remote plasma unit and a direct plasma unit, wherein one of the remote plasma unit or the direct plasma unit generates a remote plasma and the other of the remote plasma unit or the direct plasma unit generates a direct plasma. The combination of a remote plasma unit and a direct plasma unit is used to remove, etch, clean, or treat residue on a substrate from previous processing and/or from native oxide formation. The combination of a remote plasma unit and direct plasma unit is used to deposit thin films on a substrate.
    Type: Grant
    Filed: June 20, 2022
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Kazuya Daito, Yi Xu, Yu Lei, Takashi Kuratomi, Jallepally Ravi, Pingyan Lei, Dien-Yeh Wu
  • Patent number: 11952663
    Abstract: Exemplary semiconductor processing chambers may include a substrate support including a top surface. A peripheral edge region of the top surface may be recessed relative to a medial region of the top surface. The chambers may include a pumping liner disposed about an exterior surface of the substrate support. The chambers may include a liner disposed between the substrate support and the pumping liner. The liner may be spaced apart from the exterior surface to define a purge lumen between the liner and the substrate support. The chambers may include an edge ring seated on the peripheral edge region. The edge ring may extend beyond a peripheral edge of the substrate support and above a portion of the liner. A gap may be formed between a bottom surface of the edge ring and a top surface of the liner. The gap and the purge lumen may be fluidly coupled.
    Type: Grant
    Filed: May 8, 2023
    Date of Patent: April 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Nitin Pathak, Tuan A. Nguyen, Amit Bansal, Badri N. Ramamurthi, Thomas Rubio, Juan Carlos Rocha-Alvarez
  • Patent number: 11955323
    Abstract: The present invention provides a device for blocking plasma backflow in a process chamber to protect an air inlet structure, comprising an air inlet nozzle tightly connected to an air inlet flange. The inner cavity of the air inlet nozzle is provided with an air inlet guide body, wherein the air inlet guide body has an upper structure, a middle structure, and a lower structure, the upper, middle, and lower structures are an integrated structure, the upper, middle, and lower structures are all cylindrical, the cross-sectional diameter of the upper structure is smaller than that of the middle structure, a gas gathering area is arranged between the middle structure and the lower structure, and the middle structure and the lower structure are connected by the gas gathering area.
    Type: Grant
    Filed: February 29, 2020
    Date of Patent: April 9, 2024
    Assignee: JIANGSU LEUVEN INSTRUMENTS CO. LTD
    Inventors: Na Li, Dongdong Hu, Xiaobo Liu, Haiyang Liu, Shiran Cheng, Song Guo, Zhihao Wu, Kaidong Xu
  • Patent number: 11946142
    Abstract: A plasma processing chamber for depositing a film on an underside surface of a wafer, includes showerhead pedestal. The showerhead pedestal includes a first zone and a second zone. An upper separator fin is disposed over a top surface of the showerhead pedestal and a lower separator fin is disposed under the top surface of the showerhead pedestal and aligned with the upper separator fin. The first zone is configured for depositing a first film to the underside surface of the wafer and the second zone is configured for depositing a second film to the underside surface of the wafer. In another embodiment, a top surface of the showerhead pedestal may be configured to receive a masking plate instead of the upper separator fin. The masking plate is configured with a first area that has openings and a second area that is masked. The first areas is used to provide the process gas to a portion of the underside surface of the wafer for depositing a film.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: April 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Fayaz A. Shaikh, Adriana Vintila, Matthew Mudrow, Nick Ray Linebarger, Jr., Xin Yin, James F. Lee, Brian Joseph Williams
  • Patent number: 11948813
    Abstract: To create constant partial pressures of the by-products and residence time of the gas molecules across the wafer, a dual showerhead reactor can be used. A dual showerhead structure can achieve spatially uniform partial pressures, residence times and temperatures for the etchant and for the by-products, thus leading to uniform etch rates across the wafer. The system can include differential pumping to the reactor.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: April 2, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: Tom E. Blomberg, Varun Sharma
  • Patent number: 11932941
    Abstract: In various aspects, a preheater, a directed flow chemical vapor infiltration/chemical vapor deposition (CVI/CVD) furnace, and/or an installation jig are described. In one example, a preheater includes a central inlet; a circuitous gas flow path downstream of the central inlet; a plenum section downstream of the circuitous gas flow path; and an outlet diffuser plate defining a plurality of apertures fluidly configured to couple the preheater to a furnace working zone, wherein the outlet diffuser plate is downstream of the plenum section, wherein the circuitous gas flow path is fluidly coupled to the plenum section by an outer circumferential slot opening.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: March 19, 2024
    Assignee: Rolls-Royce High Temperature Composites, Inc.
    Inventor: Jeffrey Crutchfield
  • Patent number: 11926893
    Abstract: Described herein is a technique capable of suppressing generation of particles by removing by-products in a groove of a high aspect ratio. According to one aspect of the technique, there is provided a substrate processing apparatus including: a process chamber in which a substrate is processed; and a substrate support provided in the process chamber and including a plurality of supports where the substrate is placed, wherein the process chamber includes a process region where a process gas is supplied to the substrate and a purge region where the process gas above the substrate is purged, and the purge region includes a first pressure purge region to be purged at a first pressure and a second pressure purge region to be purged at a second pressure higher than the first pressure.
    Type: Grant
    Filed: September 9, 2022
    Date of Patent: March 12, 2024
    Assignee: Kokusai Electric Corporation
    Inventors: Naofumi Ohashi, Tetsuaki Inada
  • Patent number: 11905596
    Abstract: A substrate processing apparatus comprising: a substrate process chamber having a plasma generation space where a processing gas is plasma-excited and a substrate processing space communicating with the plasma generation space; a substrate mounting table installed inside the substrate processing space and for mounting a substrate; an inductive coupling structure provided with a coil installed to be wound around an outer periphery of the plasma generation space; a substrate support table elevating part for raising and lowering the substrate mounting table; a gas supply part for supplying the processing gas to the plasma generation space; and a controller for controlling the substrate support table elevating part, based on a power value of a high-frequency power supplied to the coil, so that the substrate mounted on the substrate mounting table is positioned at a target height according to the power value and spaced apart from a lower end of the coil.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: February 20, 2024
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Teruo Yoshino, Takeshi Yasui, Masaki Murobayashi, Koichiro Harada, Tadashi Terasaki, Masanori Nakayama
  • Patent number: 11885017
    Abstract: A vaporizer is provided that is capable of heating source material mist under precise temperature management and thereby able to acquire a gas source material which can be adjusted to a prescribed temperature and which has a very low level of variation in temperature and that produces almost no precipitate. The vaporizer heats and vaporizes a source material mist to obtain a gas source material for film forming.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: January 30, 2024
    Inventors: Yutaka Suzuki, Takashi Saito
  • Patent number: 11887822
    Abstract: An edge ring includes a ramp surface of which a height decreases from an outer edge-side portion toward an inner edge-side portion. The edge ring is configured to satisfy the relation of T2/T1>T4/T3. Where, T1 is a thickness of the edge ring, before plasma treatment, at a first position on the ramp surface of the inner edge-side portion, and T2 is a thickness of the edge ring, before plasma treatment, at a second position on the ramp surface of the outer edge-side portion. T3 is a thickness of the edge ring, after plasma treatment, at the first position, and T4 is a thickness of the edge ring, after plasma treatment, at the second position.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: January 30, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Toshifumi Ishida, Yusuke Saitoh
  • Patent number: 11881384
    Abstract: Embodiments disclosed herein include a housing for a source array. In an embodiment, the housing comprises a conductive body, where the conductive body comprises a first surface and a second surface opposite from the first surface. In an embodiment a plurality of openings are formed through the conductive body and a channel is disposed into the second surface of the conductive body. In an embodiment, a cover is over the channel, and the cover comprises first holes that pass through a thickness of the cover. In an embodiment, the housing further comprises a second hole through a thickness of the conductive body. In an embodiment, the second hole intersects with the channel.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: January 23, 2024
    Assignee: Applied Materials, Inc.
    Inventors: James Carducci, Richard C. Fovell, Larry D. Elizaga, Silverst Rodrigues, Vladimir Knyazik, Philip Allan Kraus, Thai Cheng Chua
  • Patent number: 11873558
    Abstract: Precursor container, comprising a first volume formed by a first chamber to house precursor material, a second volume formed by a second chamber and separated from the first volume by a partition wall, and a conduit passing through the partition wall and extending from the first volume to the second volume providing the precursor material housed within the first volume with a route to the second volume following a pressure increase in the first volume. The partition wall is a gas-permeable wall allowing gas from the first volume to permeate to the second volume.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: January 16, 2024
    Assignee: Picosun Oy
    Inventor: Tom Blomberg
  • Patent number: 11859282
    Abstract: Various embodiments include an apparatus to supply gases to a tool. In various examples, the apparatus includes a point-of-use (POU) valve manifold that includes a manifold body to couple to a chamber of the tool. The manifold body has multiple gas outlet ports. A purge-gas outlet port of the manifold body is directed substantially toward the outlet ports. For each of multiple gases to be input to the POU-valve manifold, the POU-valve manifold further includes: a first valve coupled to the manifold body and a divert valve coupled to the first valve. The first valve can be coupled to a gas supply and has a separate gas flow path internal to the manifold body and separate from remaining ones of the gas flow paths. The divert valve diverts the gas during a period when the precursor gas is not to be directed into the chamber by the first valve. Other examples are disclosed.
    Type: Grant
    Filed: July 26, 2022
    Date of Patent: January 2, 2024
    Assignee: Lam Research Corporation
    Inventors: Damodar Rajaram Shanbhag, Nagraj Shankar
  • Patent number: 11862475
    Abstract: A semiconductor processing system includes a remote plasma source (RPS), a faceplate, and an output manifold positioned between the RPS and the faceplate. The output manifold is characterized by a plurality of purge outlets that are fluidly coupled with a purge gas source and a plurality of deposition outlets that are fluidly coupled with a deposition gas source. A delivery tube extends between and fluidly couples the RPS and the faceplate. The delivery tube is characterized by a generally cylindrical sidewall that defines an upper plurality of apertures that are arranged in a radial pattern. Each of the upper apertures is fluidly coupled with one of the purge outlets. The generally cylindrical sidewall defines a lower plurality of apertures that are arranged in a radial pattern and below the upper plurality of apertures. Each of the lower apertures is fluidly coupled with one of the deposition outlets.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: January 2, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Fang Ruan, Diwakar Kedlaya, Amit Bansal, Venkata Sharat Chandra Parimi, Rajaram Narayanan, Badri N. Ramamurthi, Sherry L. Mings, Job George Konnoth Joseph, Rupankar Choudhury
  • Patent number: 11859284
    Abstract: A shower head structure and a plasma processing apparatus are provided. The shower head structure includes a plate body with a first zone and a second zone on a first surface. A plurality of first through holes are in the first zone, each of the first through holes having a diameter uniform with others of the first through holes. A plurality of second through holes are in the second zone. The first zone is in connection with the second zone, and the diameter of each of the first through holes is greater than a diameter of each of the second through holes. A plasma processing apparatus includes the shower head structure is also provided.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Huan-Chieh Chen, Jhih-Ren Lin, Tai-Pin Liu, Shyue-Shin Tsai, Keith Kuang-Kuo Koai
  • Patent number: 11859280
    Abstract: Described herein is a technique capable of improving a film thickness uniformity on a surface of a wafer whereon a film is formed. According to one aspect of the technique of the present disclosure, there is provided a substrate processing apparatus including: a process chamber in which a substrate is processed; a process gas nozzle configured to supply a process gas into the process chamber; an inert gas nozzle configured to supply an inert gas into the process chamber while a concentration of the process gas at the center of the substrate is higher than a concentration required for processing the substrate; and an exhaust pipe configured to exhaust an inner atmosphere of the process chamber; wherein the process gas nozzle and the inert gas nozzle are disposed beside the edge of substrate with a predetermined distance therebetween corresponding to an angle of circumference of 90 to 180 degrees.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: January 2, 2024
    Assignee: KOKUSAI ELECTRIC CORPORATION
    Inventors: Hidetoshi Mimura, Takafumi Sasaki, Hidenari Yoshida, Yusaku Okajima
  • Patent number: 11851760
    Abstract: A plasma processing system is provided. The system includes a chamber, a controller and a showerhead disposed in the chamber. A first gas manifold is connected to the showerhead for providing a first gas from a first gas source responsive to control from the controller. A shower-pedestal is disposed in the chamber and oriented opposite the showerhead. A second gas manifold is connected to the shower-pedestal for providing a second gas from a second gas source responsive to control from the controller. A substrate support for holding a substrate at a spaced apart relationship from the shower-pedestal is provided. A radio frequency (RF) power supply for providing power to the showerhead to generate a plasma is provided. The plasma is used for depositing a film on a back-side of the substrate, when present in the chamber. The substrate is held by the substrate support in the spaced apart relationship from the shower-pedestal, during backside deposition.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: December 26, 2023
    Assignee: Lam Research Corporation
    Inventors: Fayaz Shaikh, Nick Linebarger, Curtis Bailey