Patents Examined by Rudy Zervigon
  • Patent number: 11699573
    Abstract: A plasma processing system includes a chamber, a gas supply unit, a gas exhaust unit, a separating unit, a boost unit and an accumulation unit. The chamber is configured to process a target substrate by plasma of a gaseous mixture of a rare gas and a processing gas. The gas supply unit is configured to supply the rare gas and the processing gas into the chamber. The gas exhaust unit is configured to exhaust a gas containing the rare gas from the chamber. The separating unit is configured to separate the rare gas from the gas exhausted by the gas exhaust unit. The boost unit is configured to boost the rare gas separated by the separating unit. The accumulation unit is configured to accumulate the rare gas boosted by the boost unit and supply the accumulated first rare gas to the gas supply unit.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: July 11, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Kazuki Moyama, Kazuya Nagaseki
  • Patent number: 11697877
    Abstract: Embodiments of the disclosure relate to faceplates for a processing chamber. In one example, a faceplate includes a body having a plurality of apertures formed therethrough. A heating element is disposed within the body, and the heating element circumscribes the plurality of apertures. A support ring is disposed the body. The support ring circumscribes the heating element. The support ring includes a main body and a cantilever extending radially inward from the main body. The cantilever contacts the body of the faceplate.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Amit Kumar Bansal, Saket Rathi, Tuan Anh Nguyen
  • Patent number: 11694908
    Abstract: Exemplary semiconductor processing chambers may include a gasbox including a first plate having a first surface and a second surface opposite to the first surface. The first plate of the gasbox may define a central aperture that extends from the first surface to the second surface. The first plate may define an annular recess in the second surface. The first plate may define a plurality of apertures extending from the first surface to the annular recess in the second surface. The gasbox may include a second plate characterized by an annular shape. The second plate may be coupled with the first plate at the annular recess to define a first plenum within the first plate.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: July 4, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Rahul Rajeev, Yunzhe Yang, Abhijit A. Kangude, Kedar Joshi
  • Patent number: 11694878
    Abstract: When a gas supplied to a gas injection unit is switched from a first processing gas to a second processing gas, a controller of a gas supply system performs control to open a first supply on/off valve connected to the gas injection unit and provided in a first gas supply line for supplying the first processing gas and a second exhaust on/off valve provided in a first gas exhaust line branched from the first gas supply line, close a second supply on/off valve connected to the gas injection unit and provided in a second gas supply line for supplying the second processing gas and a first exhaust on/off valve provided in a second gas exhaust line branched from the second gas supply line; and then open the second supply on/off valve and the first exhaust on/off valve and close the first supply on/off valve and the second exhaust on/off valve.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: July 4, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Atsushi Sawachi
  • Patent number: 11682565
    Abstract: An improved fluid delivery system and method that directly controls the concentration of constituent components in a fluid mixture delivered, for example, to a process chamber. Pressure of the fluid mixture can also be directly controlled. A concentration sensor capable of measuring concentration of all of the constituent components in a fluid mixture is used to provide signals used to vary the flow rate of constituent gases under a closed loop feedback system. The signal output of one or more pressure sensors can also be used to provide a signal used to vary the flow rate of constituent gases under a closed loop feedback system. By directly controlling these two extremely important process variables, embodiments of the present invention provide a significant advantage in measurement accuracy over the prior art, enable real-time process control, reduce system level response time, and allow for a system with a significant footprint reduction.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: June 20, 2023
    Inventors: Philip Ryan Barros, Greg Patrick Mulligan, Chris Melcer
  • Patent number: 11680321
    Abstract: A method for fabricating a semiconductor device, including the steps of: providing a substrate having an etch stop layer formed thereon; forming a preliminary stacked structure on the etch stop layer, the preliminary stacked structure including a lower sacrifice layer contacting the etch stop layer, a support layer, and an upper sacrifice layer; forming a hole penetrating the preliminary stacked structure and the etch stop layer; forming a conductive pattern in the hole; removing the upper sacrifice layer and a portion of the support layer; removing the lower sacrifice layer; forming a first conductive layer covering the conductive pattern; and forming a dielectric layer covering the first conductive layer, a remaining portion of the support layer, and the etch stop layer.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: June 20, 2023
    Assignee: XIA TAI XIN SEMICONDUCTOR (QING DAO) LTD.
    Inventors: Chan-Sul Joo, Jee-Hoon Kim
  • Patent number: 11674227
    Abstract: Aspects of the present disclosure provide systems and apparatuses for a substrate processing assembly with a laminar flow cavity gas injection for high and low pressure. A dual gas reservoir assembly is provided in a substrate processing chamber, positioned within a lower shield assembly. A first gas reservoir is in fluid communication with a processing volume of the substrate processing assembly via a plurality of gas inlet, positioned circumferentially about the processing volume. A second gas reservoir is positioned circumferentially about the first gas reservoir, coupled therewith via one or more reservoir ports. The second gas reservoir is in fluid communication with a first gas source. A recursive path gas assembly is positioned in an upper shield body adjacent to an electrode to provide one or more gases to a dark space gap.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: June 13, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kirankumar Neelasandra Savandaiah, Srinivasa Rao Yedla, Nitin Bharadwaj Satyavolu, Ganesh Subbuswamy, Devi Raghavee Veerappan, Thomas Brezoczky
  • Patent number: 11667577
    Abstract: A method of manufacturing a chamber component for a processing chamber comprises forming a green body using a Y2O3—ZrO2 powder consisting essentially of 55-65 mol % Y2O3 and 35-45 mol % ZrO2; and sintering the green body to produce a sintered ceramic body consisting essentially of one or more phase of Y2O3—ZrO2, the sintered ceramic body consisting essentially of 55-65 mol % Y2O3 and 35-45 mol % ZrO2.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: June 6, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, David Fenwick
  • Patent number: 11670483
    Abstract: A gas generation system for an ion implantation system has a hydrogen generator configured to generate hydrogen gas within an enclosure. A chuck, such as an electrostatic chuck, supports a workpiece in an end station of the ion implantation system, and a delivery system provides the hydrogen gas to the chuck. The hydrogen gas can be provided through the chuck to a backside of the workpiece. Sensors can detect a presence of the hydrogen gas within the enclosure. A controller can control the hydrogen generator. An exhaust system can pass air through the enclosure to prevent a build-up of the hydrogen gas within the enclosure. A purge gas system provides a dilutant gas to the enclosure. An interlock system can control the hydrogen generator, delivery system, purge gas system, and exhaust system to mitigate hydrogen release based on a signal from the one or more sensors.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: June 6, 2023
    Assignee: Axcelis Technologies, Inc.
    Inventor: Joseph Ferrara
  • Patent number: 11661656
    Abstract: According to an embodiment of the present disclosure, a thin film forming apparatus includes a chamber, a plurality of gas inlets that are formed at an upper portion of the chamber and receive at least two reaction gas and precursors for radical reaction, and a radical unit configured to generate radicals by reacting the reaction gas provided through the gas inlet and deposit a thin film on a substrate by spraying the radicals and the precursors downward. The radical unit is configured with a plurality of plates, a precursor spray path is configured to be sprayed from the radical unit after the precursors are sprayed to a plurality of paths greater than precursor spray paths of the gas inlet in an uppermost plate among the plurality of plates, and a reaction gas spray path is configured not to overlap with the precursor spray path.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: May 30, 2023
    Assignee: EQ TECH PLUS CO., LTD.
    Inventors: Dong Hwa Shin, Yong Weon Kim
  • Patent number: 11661654
    Abstract: A gas delivery system includes a 2-port valve including a first valve located between a first port and a second port. A 4-port valve includes a first node connected to a first port and a second port. A bypass path is located between the third port and the fourth port. A second node is located along the bypass path. A second valve is located between the first node and the second node. A manifold block defines gas flow channels configured to connect the first port of the 4-port valve to a first inlet, configured to connect the second port of the 4-port valve to the first port of the 2-port valve, the third port of the 4-port valve to a second inlet, the second port of the 2-port valve to a first outlet, and the fourth port of the 4-port valve to a second outlet.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: May 30, 2023
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ramesh Chandrasekharan, Antonio Xavier, Frank Loren Pasquale, Ryan Blaquiere, Jennifer Leigh Petraglia, Meenakshi Mamunuru
  • Patent number: 11643725
    Abstract: Exemplary semiconductor processing chambers may include a substrate support including a top surface. A peripheral edge region of the top surface may be recessed relative to a medial region of the top surface. The chambers may include a pumping liner disposed about an exterior surface of the substrate support. The chambers may include a liner disposed between the substrate support and the pumping liner. The liner may be spaced apart from the exterior surface to define a purge lumen between the liner and the substrate support. The chambers may include an edge ring seated on the peripheral edge region. The edge ring may extend beyond a peripheral edge of the substrate support and above a portion of the liner. A gap may be formed between a bottom surface of the edge ring and a top surface of the liner. The gap and the purge lumen may be fluidly coupled.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: May 9, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nitin Pathak, Tuan A. Nguyen, Amit Bansal, Badri N. Ramamurthi, Thomas Rubio, Juan Carlos Rocha-Alvarez
  • Patent number: 11646184
    Abstract: A substrate processing apparatus capable of minimizing the effect of a filling gas in a lower space on the processing of a substrate includes: a substrate supporting unit; a processing unit on the substrate supporting unit; and an exhaust unit connected to a reaction space between the substrate supporting unit and the processing unit, wherein a first gas in the reaction space and a second gas in a lower space below the substrate supporting unit meet each other outside the reaction space.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: May 9, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: HyungChul Moon, WonKi Jeong
  • Patent number: 11639550
    Abstract: An apparatus for depositing a thin layer and associated method, the apparatus including a process chamber; a support in the process chamber, substrates being supportable on the support at different heights; a gas injector configured to inject a gas into the process chamber; and a heater configured to heat the process chamber, wherein the gas injector includes a first injector configured to inject a first gas; and a second injector configured to inject a second gas, a flow rate of the first gas injected from the first injector ranges from 120 sccm to 240 sccm, and a flow rate of the second gas injected from the second injector ranges from 1,200 sccm to 2,400 sccm.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: May 2, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-Gu Kim, Homin Son, Junghyeon Kim, Hangkyu Song, Eunha Oh, Oleg Feygenson, Donghyun Jang, Sung-Woo Jeon, Wooyeon Hwang
  • Patent number: 11634814
    Abstract: An atomic layer deposition apparatus having a vacuum chamber, a deposition chamber within the vacuum chamber, an inlet channel extending from outside of the vacuum chamber to the deposition chamber such that the inlet channel is connected to the deposition chamber for supplying gases to the deposition chamber, a discharge channel extending from the deposition chamber to outside of the vacuum chamber for discharging gases from the deposition chamber, one or more first precursor supply sources connected to the inlet channel, and one or more second precursor supply sources connected to the inlet channel. The vacuum chamber is arranged between the one or more first precursor supply sources and the one or more second precursor supply sources.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: April 25, 2023
    Assignee: BENEQ GROUP OY
    Inventors: Ville Miikkulainen, Hulda Aminoff, Pekka Soininen, Pekka J. Soininen
  • Patent number: 11634813
    Abstract: Embodiments of the present disclosure provide apparatuses for improving gas distribution during thermal processing. In one or more embodiments, an apparatus includes a body, an angled gas source assembly, and a gas injection channel. The gas injection channel has a first half-angle and a second half-angle. The first half-angle is different from the second half-angle. The use of an improved side gas assembly in a processing chamber to direct gas from the center toward the edge of the substrate advantageously controls growth uniformity throughout the substrate. Surprisingly, directing gas through a gas channel with non-uniform half-angles will significantly increase the reaction at or near the edge of the substrate, thereby leading to an improved overall thickness uniformity of the substrate.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: April 25, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Eric Kihara Shono
  • Patent number: 11628456
    Abstract: Ampoules for a semiconductor manufacturing precursors and methods of use are described. The ampoules include a container with an inlet port and an outlet port. The inlet port has a showerhead that the end within the container. The showerhead has at least two angled nozzles to direct the flow of gas within the cavity so that the gas flow is not perpendicular to the surface of a liquid within the ampoule.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: April 18, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Kenric Choi, Xiaoxiong Yuan, Daping Yao, Mei Chang
  • Patent number: 11613810
    Abstract: A film deposition apparatus includes a body formed with openings and cavity, a spray assembly, and a gas assembly. The spray assembly sprays a precursor stream into the cavity for forming a film on a substrate. The gas assembly injects one or more gases into the cavity through the openings to shape the precursor stream and improve directionality and utilization of the precursor stream. The film deposition apparatus can operate with one or more plasma generators to form a laminated film on the substrate. The laminated film may have three layers of film: a first film formed through reaction of a first precursor with plasma, a second film being a composite of the first precursor and a second precursor, and a third film formed through sonification of the second precursor on top of the second film. The second precursor can infiltrate into the first film and fill defects therein.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: March 28, 2023
    Assignee: Nova Engineering Films, Inc.
    Inventor: Sang In Lee
  • Patent number: 11608559
    Abstract: A substrate processing system includes a first chamber including a substrate support. A showerhead is arranged above the first chamber and is configured to filter ions and deliver radicals from a plasma source to the first chamber. The showerhead includes a heat transfer fluid plenum, a secondary gas plenum including an inlet to receive secondary gas and a plurality of secondary gas injectors to inject the secondary gas into the first chamber, and a plurality of through holes passing through the showerhead. The through holes are not in fluid communication with the heat transfer fluid plenum or the secondary gas plenum.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: March 21, 2023
    Assignee: Lam Research Corporation
    Inventors: Rachel Batzer, Huatan Qiu, Bhadri Varadarajan, Patrick Girard Breiling, Bo Gong, Will Schlosser, Zhe Gui, Taide Tan, Geoffrey Hohn
  • Patent number: 11610759
    Abstract: Disclosed herein is a gas delivery assembly for processing a substrate. In one example, a processing chamber comprises a plurality of walls, a bottom, and a lid to form an interior volume. Gas nozzles provide gas into the interior volume. A substrate support is disposed in the interior volume, having a top surface that supports a substrate. A gas delivery assembly comprises a gas manifold, and is disposed outside of the processing chamber. Gas passageways extend from the gas manifold to the gas nozzles, each gas passageway having similar conductance. A controller is fluidically coupled to each of the gas passageways, and is configured to control the timing at which a first process gas flows from the gas delivery assembly through the controller into the gas manifold, and the timing at which a second process gas is injected into the gas manifold through the gas nozzles.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventor: James Rogers