Patents Examined by Rufus Phillips
  • Patent number: 10012215
    Abstract: The invention relates to a method for capturing a blade angle of a rotor blade of a rotor of a wind turbine, comprising the steps disposing and aligning a contactless measuring device in front of the wind turbine, aligning the wind turbine in its azimuth position in relation to the measuring device, rotating the rotor of the wind turbine, sampling and capturing the profile of the rotor blade, or a part thereof, at a predefined height, by means of the contactless measuring device, and determining the blade angle of the rotor blade from the data recorded during the sampling of the profile.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: July 3, 2018
    Assignee: Wobben Properties GmbH
    Inventor: Jürgen Stoltenjohannes
  • Patent number: 9970817
    Abstract: A spectroscopic analysis apparatus includes a spectrum measurement unit that measures an optical spectrum of a measurement target, a storage unit that stores reference data in which an intrinsic wavelength with respect to a known component is recorded, a feature specification section that specifies a feature point corresponding to the intrinsic wavelength in the optical spectrum which is measured by using the reference data, and a wavelength correction section that corrects a wavelength of the feature point in the optical spectrum as the intrinsic wavelength.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: May 15, 2018
    Assignee: Seiko Epson Corporation
    Inventors: Kazunori Sakurai, Hirokazu Kasahara
  • Patent number: 9970818
    Abstract: Disclosed is a method, computer method, system, and apparatus for measuring two-dimensional distributions of optical emissions from a plasma in a semiconductor plasma processing chamber. The acquired two-dimensional distributions of plasma optical emissions can be used to infer the two-dimensional distributions of concentrations of certain chemical species of interest that are present in the plasma, and thus provide a useful tool for process development and also for new and improved processing tool development. The disclosed technique is computationally simple and inexpensive, and involves the use of an expansion of the assumed optical intensity distribution into a sum of basis functions that allow for circumferential variation of optical intensity. An example of suitable basis functions are Zernike polynomials.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: May 15, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Junwei Bao, Ching-Ling Meng, Holger Tuitje, Mihail Mihaylov, Yan Chen, Zheng Yan, Haixing Zou, Hanyou Chu
  • Patent number: 9958320
    Abstract: The apparatus for selectively transmitting the spectrum of electromagnetic radiation within a predefined wavelength range is provided with a carrier (115), a pinhole diaphragm which is arranged above the carrier (115) and is made of a material that is substantially impermeable to the radiation of interest, wherein the pinhole diaphragm has at least one radiation passage opening with a size for allowing through radiation at a wavelength which is less than or equal to a predefinable upper limit wavelength, and an electrically insulating and optically transparent dielectric layer (103) which is formed on the carrier (115) inside the radiation passage opening and extends, in a manner adjoining the radiation passage opening, between the carrier (115) and at least one section below the pinhole diaphragm. The dielectric layer (103) has a thickness which is less than or equal to half a predefinable lower limit wavelength which is less than the upper limit wavelength.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: May 1, 2018
    Assignee: Elmos Semiconductor AG
    Inventors: Bernd Burchard, Frank Kleinschmidt, Jesco Möller
  • Patent number: 9952140
    Abstract: Methods and systems for small angle CD metrology with a small spot size are introduced to increase measurement sensitivity while maintaining adequate throughput necessary for modern semiconductor manufacture. A small angle CD metrology system includes a small angle spectroscopic ellipsometry (SE) subsystem combined with a small angle spectroscopic reflectometry system, both operated at small angles of incidence. The small angle SE subsystem is configured to operate in a complete Mueller Matrix mode to further improve measurement sensitivity. The small angle CD metrology system includes an objective having all reflective surfaces in the light path. In some embodiments, the all-reflective objective is a Schwartzschild objective having an axicon mirror element to further reduce measurement spot size. In some embodiments, the small angle CD metrology system includes a dynamic aperture subsystem to isolate specific ranges of angles of incidence and azimuth for improved measurement sensitivity.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: April 24, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Haiming Wang, Shankar Krishnan
  • Patent number: 9927297
    Abstract: An optical microscope capable of performing measurement with a high resolution and a spectrometry method are provided. A spectrometry device according to an aspect of the present invention includes a Y-scanning unit that scans a spot position of the light beam on the sample, a beam splitter that separates, among the light beam incident on the sample, outgoing light, the outgoing light being emitted with a different wavelength, a spectroscope that spatially disperses the outgoing light separated by the beam splitter according to the wavelength, a detector that detects the outgoing light dispersed by the spectroscope, and a pinhole array 30 disposed on an incoming side of the spectroscope, a plurality of pinholes being arranged in the pinhole array, the plurality of pinholes being adapted to allow outgoing light to pass therethrough to the spectroscope side.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 27, 2018
    Assignee: NANOPHOTON CORPORATION
    Inventors: Satoshi Kawata, Minoru Kobayashi, Taisuke Ota
  • Patent number: 9909989
    Abstract: Microstructures and nanostructures (100) consisting of a substrate (110), an array of pillars (120) capped by metallic disc (130), metallic dots (clusters or granules) (140) disposed on the sidewalls of the pillars, and a metallic backplane (150) that can interact to enhance a local electric field, the absorption of the light, and the radiation of the light are disclosed. Methods to fabricate the structures (100) are also disclosed. Applications of the structures to enhance the optical signals in the detection of molecules and other materials on a structure surface, such as fluorescence, photoluminescence and surface enhanced Raman Scattering (SERS) are also disclosed.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: March 6, 2018
    Assignee: The Trustees of Princeton University
    Inventors: Stephen Y. Chou, Wendi Li
  • Patent number: 9903806
    Abstract: An optical metrology device, such as an ellipsometer, includes a focusing system that adjusts the focal position of the metrology device in real time so that focus may be maintained during movement of the measurement locations on the sample, e.g., using closed loop control. A filtered focus signal may be used to adjust the focal position while moving to a measurement location. Additionally, the focus signal may be coarsely filtered and finely filtered, where a coarse filtered focus signal is used to adjust the focal position while moving to a measurement location and a fine filtered focus signal is used to adjust the focal position when at the measurement location. An open loop control may be used in which once at the measurement location, a filtered focus signal is used to adjust the focal position when the filtered focus signal has no offset with respect to the focus signal.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: February 27, 2018
    Assignee: Nanometrics Incorporated
    Inventor: Amit Shachaf
  • Patent number: 9897440
    Abstract: A method for determining and verifying ply orientation of composite laminates includes performing a first scan of a prepared edge of a composite laminate using an off-axis inclined light source directing light at a first acute angle to a first area on the prepared edge to produce a first scanned image; rotating an orientation of the off-axis inclined light source relative to the prepared edge, such that the off-axis inclined light source directs light at a second acute angle symmetrically opposite the first acute angle; and performing a second scan of the prepared edge using the off-axis inclined light source directing light at the second acute angle to the first area on the prepared edge to produce a second scanned image. The method includes comparing the first and second scanned images to determine a ply orientation of each ply, and verifying the ply orientation against a baseline ply orientation.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: February 20, 2018
    Assignee: The Boeing Company
    Inventors: Thomas J. Gonze, James R. Kendall, David C. Jackson
  • Patent number: 9832853
    Abstract: An extreme ultraviolet light system includes a steering system that steers and focuses an amplified light beam traveling along a propagation direction to a focal plane near a target location within an extreme ultraviolet light chamber, a detection system including at least one detector positioned to detect an image of a laser beam reflected from at least a portion of a target material within the chamber, a wavefront modification system in the path of the reflected laser beam and between the target location and the detection system, and a controller. The wavefront modification system is configured to modify the wavefront of the reflected laser beam as a function of a target focal plane position along the propagation direction. The controller includes logic for adjusting a location of the focal plane of the amplified light beam relative to the target material based on the detected image of the reflected laser beam.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: November 28, 2017
    Assignee: ASML Netherlands B.V.
    Inventors: Matthew R. Graham, William N. Partlo, Steven Chang, Robert A. Bergstedt
  • Patent number: 9829352
    Abstract: Distributions of a Brillouin frequency shift and a Rayleigh frequency shift in optical fibers set up in a material are measured from scattered waves of pulse laser light entered into the optical fibers, and distributions of pressure, temperature, and strain of the material along the optical fibers at a measurement time point are analyzed using coefficients that are inherent to the set up optical fibers and correlate pressure, temperature, and strain of material with the Brillouin frequency shift and the Rayleigh frequency shift.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: November 28, 2017
    Assignees: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH, NEUBREX CO., LTD.
    Inventors: Ziqiu Xue, Yoshiaki Yamauchi, Kinzo Kishida
  • Patent number: 9784642
    Abstract: An optical fiber sensor system and method for monitoring a condition of a linear structure such as a pipeline is provided which is capable of providing continuous monitoring in the event of a break in the sensing optical fiber or fibers. The system includes at least one sensing fiber provided along the length of the linear structure, and first and second interrogation and laser pumping sub-systems disposed at opposite ends of the sensing fiber, each of which includes a reflectometer. The reflectometer of the first interrogation and laser pumping sub-system is connected to one end of the sensing fiber. The reflectometer of the second interrogation and laser pumping sub-system is coupled to either (i) an end of a second sensing fiber provided along the length of the linear structure which is opposite from the one end of the first sensing fiber, or (ii) the opposite end of the first sensing fiber.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 10, 2017
    Assignee: OneSubsea IP UK Limited
    Inventors: Andrew Strong, Gareth Lees, Roger Hampson, Kevin Williams, Arthur Hartog
  • Patent number: 9766174
    Abstract: Disclosed herein is an optical measuring device including: a light applying section configured to apply exciting light to a sample flowing in a channel; and a scattered light detecting section configured to detect scattered light generated from the sample irradiated with the exciting light on the downstream side of the sample in the traveling direction of the exciting light; the scattered light detecting section including a scattered light separating mask for separating the scattered light into a low numerical aperture component having a numerical aperture not greater than a specific value and a high numerical aperture component having a numerical aperture greater than the specific value; a first detector for detecting the low numerical aperture component; and a second detector for detecting the high numerical aperture component.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: September 19, 2017
    Assignee: Sony Corporation
    Inventors: Shunpei Suzuki, Shingo Imanishi, Gakuji Hashimoto, Suguru Dowaki
  • Patent number: 9759546
    Abstract: The invention relates to a method for measuring thickness variations in a layer of a multilayer semiconductor structure, characterized in that it comprises: acquiring, via an image acquisition system, at least one image of the surface of the structure, the image being obtained by reflecting an almost monochromatic light flux from the surface of the structure; and processing the at least one acquired image in order to determine, from variations in the intensity of the light reflected from the surface, variations in the thickness of the layer to be measured, and in that the wavelength of the almost monochromatic light flux is chosen to correspond to a minimum of the sensitivity of the reflectivity of a layer of the structure other than the layer the thickness variations of which must be measured, the sensitivity of the reflectivity of a layer being equal to the ratio of: the difference between the reflectivities of two multilayer structures for which the layer in question has a given thickness difference; to th
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: September 12, 2017
    Assignees: Soitec, STMICROELECTRONICS (Crolles 2) SAS
    Inventors: Oleg Kononchuk, Didier Dutartre
  • Patent number: 9752929
    Abstract: A light-detecting device and method for converting optical radiation on switched conductivity diodes. The device comprises one or more photosensitive cells connected to address and signal lines, each cell comprising the following elements connected in series: a photodetector, an initial charge input circuit, a charge converter for converting the charge generated by the photodetector signal in addition to the initial charge into photodetector output voltage, a comparator which converts the difference between the photodetector output voltage and reference voltage into a digital cell signal, a reading circuit for reading the digital cell signal through the address lines and the signal lines, a circuit for generating digital codes of the cell signal, a random access memory for storing the digital codes, a reading circuit for reading the digital codes of the cell signals on one or more outputs of the light-detecting device.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: September 5, 2017
    Assignee: Pinnacle Imaging Corporation
    Inventors: Vanjushin Igor′ Valer'evich, Klimkovich Anton Grigor'evich, Volodin Evgeuij Borisovich
  • Patent number: 9746404
    Abstract: A method and apparatus for inspection of liquids are disclosed. The method includes inspecting a liquid with a technique selected according to whether the package of the liquid is transparent, semi-transparent or opaque. If the package is transparent or semi-transparent, a Raman spectra technique is used; if the package is opaque, a technique using an electronic scale and a barcode reader is used. In some embodiments, the Raman spectra technique and the technique using barcode reader and electronic scale can be used independently for inspection of the liquid. The inspection apparatus according to the present disclosure has advantages, such as capability of material identification, rapid examination speed, small volume, light weight, portability, low cost, freedom from radiation, and simple maintenance. The method and apparatus according to the present disclosure are suitable for safety inspection in public places having a large number, and fast flow, of people.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: August 29, 2017
    Assignee: NUCTECH COMPANY LIMITED
    Inventors: Hongqiu Wang, Yumin Yi, Huacheng Feng, Rui Fan
  • Patent number: 9726473
    Abstract: A light interference measuring device comprises: a light source 20 that outputs light; a beam splitter 222 that causes the light output from the light source to diverge into a reference optical path and a measurement optical path and that outputs a combined wave in which reflection light that has passed through the reference optical path and reflection light that has passed through a measuring object arranged in the measurement optical path are combined; a reference mirror 231 that is arranged in the reference optical path and that reflects light which is diverged into the reference optical path by the beam splitter 222; a stage 12 that is arranged in the measurement optical path and that has the work W placed thereon; an imaging part 25 that images an image in which the combined wave is formed; a reference mirror adjustment mechanism (234, 238, 239) that adjusts a posture of the reference mirror 231; and a control part that controls the reference mirror adjustment mechanism such that a reflecting surface of
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: August 8, 2017
    Assignee: MITUTOYO CORPORATION
    Inventors: Kenji Okabe, Gyokubu Cho, Tatsuya Nagahama
  • Patent number: 9671218
    Abstract: A quick subpixel absolute positioning device and method are introduced.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: June 6, 2017
    Assignee: NATIONAL CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yi-Yuh Hwang, Wei-Guo Chang, Chin-Der Hwang, Guang-Sheen Liu, Wen-Jen Lin, Ping-Ya Ko
  • Patent number: 9658156
    Abstract: This invention enables high throughput detection of small molecule effectors of particle association, as well as quantification of association constants, stoichiometry, and conformation. Given a set of particle solutions having different concentrations, dynamic light scattering measurements are used to determine the average hydrodynamic radius, as a function of concentration. The series of average hydrodynamic radii as a function of concentration are fitted with stoichiometric association models containing the parameters of molar mass, modeled concentrations, and modeled hydrodynamic radii of the associated complexes. In addition to the average hydrodynamic radii value analysis, the experimental data may be fit/analyzed in alternate ways. This method may be applied to a single species that is self-associating or to multiple species that are hetero-associating. This method may also be used to characterize and quantify the association between a modulator and the associating species.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 23, 2017
    Assignee: WYATT TECHNOLOGY CORPORATION
    Inventor: Michael I. Larkin
  • Patent number: 9651482
    Abstract: A sensor device configured to be attached to a drug delivery device and configured to illuminate the drug delivery device when attached, the sensor device having an OLED having a transparent first electrode, a transparent second electrode and a central layer disposed between the first and second electrodes, the central layer comprising at least one organic layer, the at least one organic layer configured to emit light through the transparent first electrode, and an optical sensor arranged to receive light reflected from a surface of the drug delivery device, wherein the central layer of the OLED has a region without the at least one organic layer and wherein the optical sensor is arranged, when the sensor device is attached to the drug delivery device, to view a predetermined area of the surface of the drug delivery device through the region without the at least one organic layer.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: May 16, 2017
    Assignee: SANOFI-AVENTIS DEUTSCHLAND GMBH
    Inventors: Gertrud Blei, Mario Bock