Patents Examined by Russell Kemmerle, III
  • Patent number: 9061934
    Abstract: An apparatus and methods for bending sheet glass are disclosed. The present invention improves on the state-of-the-art by providing apparatus and methods that prevent unwanted distortion of the glass sheet. The apparatus and methods utilize localized heating at the bend to allow for overall glass sheet temperatures to be reduced, along with optional mechanical devices for improved bend quality.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: June 23, 2015
    Assignee: CORNING INCORPORATED
    Inventors: Antoine Gaston Denis Bisson, Curtis Richard Cowles, Laurent Joubaud, David John McEnroe, Aniello Mario Palumbo
  • Patent number: 9056789
    Abstract: The present invention provides a method of producing a granular product, the method comprising providing waste stone wool product of which at least 90% is in coherent form having minimum dimension at least 50 mm and which has a content of at least 10% water, by weight of the waste stone wool product; producing a base material from the stone wool by reducing the coherent stone wool to particulate form such that at least 80% by weight of the base material is in the form of particles having size not more than 40 mm, and has water content not more than 50 wt % based on the particulate base material; forming the particulate base material into granules, wherein at least 80% by weight of the granules have size not more than 40 mm, and subjecting the granules to sintering at a temperature in the range 900 to 1050° C. to form a granular product wherein at least 80% by weight of the granular product is in the form of granules having size not more than 40 mm, and during the operation of the method no binder is added.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: June 16, 2015
    Assignee: ROCKWELL INTERNATIONAL A/S
    Inventor: Jean Marie Wilhelmus Cuypers
  • Patent number: 9044877
    Abstract: A method for creating a vessel with a noise chamber comprising casting slip into a mold defining a vessel with a void in the foot, controlling the hardening process to facilitate the foot becoming leather-hard prior to the other parts of the vessel, placing a bead within the void in the foot, attaching a foot slab with a hole to the foot of the vessel to create a noise chamber out of the void in the foot, drying the vessel beyond a leather-hard state, applying a temporary cover to the hole in the foot slab, glazing the vessel, firing the vessel and applying a seal to the hole in the foot slab.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: June 2, 2015
    Inventor: Ashley Lin Ames
  • Patent number: 9039955
    Abstract: When a molded fabric body (X) is impregnated with a powder (K) of a predetermined material, there are performed a first step of dispersing the powder (K) in a liquid to prepare a slurry, and a second step of burying the molded fabric body (X) made of fiber bundles in the slurry and vibrating the slurry by use of a predetermined vibrator (M). Furthermore, in the second step, the vibrator (M) is moved along a surface of the molded fabric body (X). As a result, it is possible to improve the rate of impregnation of the powder (K) more than that in the conventional cases, irrespective of the shape of the molded fabric body (X).
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: May 26, 2015
    Assignee: IHI CORPORATION
    Inventors: Hiroshige Murata, Yasutomo Tanaka, Yuuki Nonaka, Takeshi Nakamura
  • Patent number: 9011757
    Abstract: A ceramic honeycomb structure having a large number of flow paths partitioned by porous cell walls, the cell walls comprising at least main crystals of aluminum titanate, in which MgO and SiO2 are dissolved to form a solid solution, and glass phases, the glass phases containing 40-80% by mass of SiO2 and 1-20% by mass of MgO, the average size of the glass phases being 30 ?m or less in a cross section of the cell walls, and the area ratio of the glass phases to the total area of the main crystals of aluminum titanate and the glass phases being 2-12% in a cross section of the cell walls, and its production method.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 21, 2015
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hirohisa Suwabe, Masaru Yoshida, Tomomasa Kumagai, Hideya Yamane
  • Patent number: 9010151
    Abstract: A glass sheet cutting device fuses and divides a glass substrate using a preset cutting line as a boundary while supplying an assist gas and a laser beam from above the glass substrate along the preset cutting line of the glass substrate. The glass sheet cutting device includes a first laser irradiator for radiating a fusing laser beam and a second laser irradiator for radiating an annealing laser beam. Through a fusing gap formed between fused end surfaces by fusing, the second laser irradiator radiates the annealing laser beam obliquely from above onto the fused end surface to be annealed.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 21, 2015
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Takahide Fujii, Setsuo Uchida, Naotoshi Inayama, Takayuki Noda, Sho Itoh, Michiharu Eta
  • Patent number: 8999224
    Abstract: A porous ceramic honeycomb article includes a primary cordierite phase and an intercrystalline glass phase. In an as-fired condition, the porous ceramic honeycomb article exhibits microcrack parameter Nb3?0.06 and an as-fired E500° C./E25° C. ratio ?0.99. The article exhibits a coated microcrack parameter Nb3?0.14 and a coated E500° C./E25° C. ratio ?1.06 after the porous ceramic honeycomb article has been washcoated and calcined at a temperature of 550° C. After the article is exposed to a thermal treatment at a temperature ?800° C. following washcoating and calcining, at least a first portion of the porous ceramic honeycomb article has a first treated microcrack parameter Nb3?0.18, and a first treated mean coefficient of thermal expansion of not more than 12×10?7/° C. over a temperature range of 25° C. to 800° C. Methods of forming the porous ceramic honeycomb article are also disclosed.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: April 7, 2015
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Gregory Albert Merkel, Martin Joseph Murtagh
  • Patent number: 8992820
    Abstract: A method of making ceramics is provided. The method comprises preparing a dispersion of a nano-material. A slurry of a ceramic matrix material is prepared. The nano-dispersion is mixed with the matrix slurry to form a nano-dispersion/slurry mixture. The nano-dispersion/slurry mixture is dried. The nano-dispersion/slurry mixture is pressed into a final manufacture comprising a granular structure including the nano-material bonded within and uniformly distributed throughout the granular structure. The manufacture comprises an increased fracture toughness compared with a conventional manufacture produced without bonding the nano-material within the granular structure. The nano-material has a size on the order of tens of nanometers. The matrix material has a size on the order of several micrometers. Five percent of the nano-dispersion/slurry mixture comprises the nano-material dispersion. Sintering is performed on the final form using a sintering process following the pressing step.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: March 31, 2015
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger, David Leamon
  • Patent number: 8986598
    Abstract: Disclosed is an alumina-coated spinel-silicon carbide refractory composition with good resistance to coal slag penetration and a method for manufacturing the same. The refractory composition refractory composition comprising 3 to 10 parts by weight of fine alpha alumina powder with respect to the weight of the refractory mixture, wherein the mixture is prepared by mixing alumina-coated spinel aggregates and silicon carbide in a ratio of 10:90 to 40:60 wt %, a dispersant, and an alumina sol as a binder.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: March 24, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Chang Sam Kim, Sang Whan Park
  • Patent number: 8986599
    Abstract: Methods are provided for making ceramic preforms having two-dimensional interconnected channels therein. The methods include (i) positioning a sacrificial material having a selected profile within a bed of ceramic powder; (ii) compacting the bed of ceramic powder to form a compacted mass; (iii) heating the compacted mass to thermally transform the sacrificial materials into a fluid without cracking the compacted mass; and (iv) removing the fluid from the compacted mass, thereby leaving a two-dimensional network of interconnected channels having the selected profile of the sacrificial material within the compacted mass. Ceramic preforms are also provided which include a compacted mass of ceramic powder and two-dimensional interconnected channels therein.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: March 24, 2015
    Assignee: Florida State University Research Foundation, Inc.
    Inventors: Okenwa O. I. Okoli, Ben Wang, Osayande Lord-Rufus Ighodaro
  • Patent number: 8974721
    Abstract: A method of making ceramic bodies includes systematically orienting the bodies during firing relative to a temperature gradient in a kiln. The systematic orientation of the bodies relative to the temperature gradient can allow for an average deviation of a measured shape of the ceramic bodies from a predetermined target contour shape to be less than what they would be if the bodies were oriented randomly relative to the temperature gradient.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: March 10, 2015
    Assignee: Corning Incorporated
    Inventors: Daniel Edward McCauley, Anthony Nicholas Rodbourn, David Robertson Treacy, Jr., Casey Allen Volino
  • Patent number: 8974724
    Abstract: Aluminum titanate precursor batch compositions comprising a recycled aluminum titanate component, at least a portion of the recycled aluminum titanate component being comprised of a recycled pre-reacted aluminum titanate composition or alternatively of an un-reacted green aluminum titanate precursor composition, and methods for producing aluminum titanate ceramic articles utilizing the inventive batch compositions.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: March 10, 2015
    Assignee: Corning Incorporated
    Inventors: John Paul Day, Robert John Locker, David Lambie Tennent, Christopher John Warren
  • Patent number: 8974726
    Abstract: Methods of preparing polycrystalline aluminum nitride materials that have high density, high purity, and favorable surface morphology are disclosed. The methods generally comprises pressing aluminum nitride powders to form a slug, sintering the slug to form a sintered, polycrystalline aluminum nitride boule, and optionally shaping the boule and/or polishing at least a portion of the boule to provide a finished substrate. The sintered, polycrystalline aluminum nitride materials beneficially are prepared without the use of any sintering aid or binder, and the formed materials exhibit excellent density, AlN purity, and surface morphology.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: March 10, 2015
    Assignee: Hexatech, Inc.
    Inventors: Baxter Moody, Rafael Dalmau, David Henshall, Raoul Schlesser
  • Patent number: 8968637
    Abstract: A system for the fabrication of dome shaped low temperature cofired ceramic (LTCC) substrates comprises a plurality of prefired substrates, a first mandrel, and a second mandrel. The prefired substrates may form a stack and each may include a circular central portion and a plurality of segments uniformly distributed along the circumference of the central portion. Each segment may include a first edge, an opposing second edge, and an end edge. The first and second edges each may have an inner end and an opposing outer end. The end edge may be coupled to the outer end of the first and second edges. The first mandrel may have a first circumference and may be configured to receive the prefired substrates while the stack is formed. The second mandrel may have a second circumference smaller than the first circumference and may be configured to retain the stack during a firing process.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: March 3, 2015
    Assignee: Honeywell Federal Manufacturing & Technologies, LLC
    Inventors: Daniel S. Krueger, Cristina Elizabeth Fadner, Gregory Vincent Miller
  • Patent number: 8968639
    Abstract: A composition for extrusion-molded bodies which comprises a) an inorganic material that sets as a result of baking or sintering, and b) a methylhydroxypropyl cellulose having a DS(methyl) of from 0.8 to 2.5 and an MS(hydroxypropyl) of from 0.50 to 1.20 is useful for producing extrusion-molded bodies for use as a carrier for a catalyst, a catalyst, a heat exchanger, or a filter.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: March 3, 2015
    Assignee: Dow Global Technologies LLC
    Inventor: Roland Bayer
  • Patent number: 8959954
    Abstract: A process for producing proppants from waste mineralogical material. The process can include providing the waste mineralogical material in a form such as particles, fines, dust, powders, and the like, and forming a plurality of “green” pellets from the waste mineralogical material. Thereafter, the plurality of green pellets are fed into a provided flame drop tower that has a combustion flame, a hot zone, and a collection basin located downstream from the hot zone. The plurality of green pellets pass through the hot zone, are melted and subsequently solidified in the shape of a sphere downstream from the hot zone to form vitrified glass spheres. In some instances, the vitrified glass spheres are subjected to a devitrification step.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: February 24, 2015
    Assignee: The Penn State Research Foundation
    Inventors: Ryan P. Koseski, John R. Hellmann, Barry E. Scheetz
  • Patent number: 8951462
    Abstract: Provided is a method of manufacturing porous ceramic bodies with gradient of porosity, in which a gradient that is continuous to a pore size and porosity is precisely controlled in a simple way. The method includes the steps of: obtaining molded bodies by pressurizing and molding a mixture of powder obtained by mixing ceramic powder and polymer powder at a weight ratio of 1:1 to 100:1; and obtaining sintered bodies with gradient of porosity by sintering the molded bodies while applying a gradient pressure to the molded bodies.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: February 10, 2015
    Assignee: SNU R&DB Foundation
    Inventors: Kug Sun Hong, Ki Tae Nam, Hae Lin Jang, Kyoung Suk Jin, Jingming Xu, Tae-Youl Yang, Jimin Park, Hui-Yun Jeong
  • Patent number: 8951463
    Abstract: A method for the production of tungsten carbide based cemented carbide or cermet tools or components using the powder injection molding method includes mixing of hard constituent powder and a metallic binder powder with an organic binder system, consisting of 30-60 wt-% olefinic polymers and 40-70 wt-% nonpolar waxes, acting as a carrier for the powder. A metallic binder powder that is granulated with a nonpolar wax is used.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 10, 2015
    Assignee: Seco Tools AB
    Inventors: Mattias Puide, Per Jonsson
  • Patent number: 8945462
    Abstract: The present invention provides a method for manufacturing a calcined gypsum wherein the mixing water amount is reduced and the setting time does not increase. As a raw gypsum is compounded with a carboxylic acid-type material and calcined, a calcined gypsum can be manufactured wherein the mixing water amount is small and the setting time does not increase. Furthermore, a regular gypsum board can be manufactured without reducing the productivity of the gypsum board even if a large quantity of recycled gypsum causing increase of the mixing water amount is used as a raw gypsum, because the mixing water amount is small and the setting time does not increase for the calcined gypsum manufactured as described above.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: February 3, 2015
    Assignee: Yoshino Gypsum Co., Ltd.
    Inventor: Shizuo Taira
  • Patent number: 8945461
    Abstract: Provided is a production method of a ?-sialon phosphor that europium ions are solid-solved in ?-sialon, including a mixing process for mixing raw materials of the ?-sialon phosphor; a burning process for burning the raw materials after the mixing process to form the ?-sialon phosphor; a HIP treatment process in which the ?-sialon phosphor after the burning process is subjected to a HIP treatment; an annealing process in which the ?-sialon phosphor after the HIP treatment process is subjected to an annealing treatment; and an acid treatment process in which the ?-sialon phosphor after the annealing process is subjected to an acid treatment. According to the production method of a ?-sialon phosphor, a ?-sialon phosphor excellent in luminescence intensity is obtained.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: February 3, 2015
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Tomohiro Nomiyama, Suzuya Yamada, Hisayuki Hashimoto