Patents Examined by Sheila V. Clark
  • Patent number: 9583477
    Abstract: According to an exemplary embodiment, a stacked half-bridge package includes a control transistor having a control drain for connection to a high voltage input, a control source coupled to an output terminal, and a control gate for being driven by a driver IC. The stacked half-bridge package further includes a sync transistor having a sync drain for connection to the output terminal, a sync source coupled to a low voltage input, and a sync gate for being driven by the driver IC. The control and sync transistors are stacked on opposite sides of a common conductive leadframe with the common conductive leadframe electrically and mechanically coupling the control source with the sync drain. The common conductive leadframe thereby serves as the output terminal.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: February 28, 2017
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Eung San Cho, Chuan Cheah, Andrew N. Sawle
  • Patent number: 9570394
    Abstract: Embodiments of the present disclosure may provide methods of forming an IC structure with a pair of metal fins. An IC structure with a pair of metal fins can include two unitary metal fins positioned on a substrate and each including an elongated wire positioned on the substrate and a via positioned directly on a portion of the elongated wire, the elongated wire and the via of each unitary metal fin defining an inverted T-shape, wherein each unitary metal fin includes the elongated wire with a pair of opposing sidewalls substantially coplanar with a pair of opposing sidewalls of the via, and wherein the each unitary metal fin includes a single crystallographic orientation. An insulating layer can be positioned directly laterally between the two unitary metal fins.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: February 14, 2017
    Assignee: Globalfoundries Inc.
    Inventors: Xunyuan Zhang, Nicholas V. LiCausi, Errol Todd Ryan
  • Patent number: 9536852
    Abstract: Embodiments described herein relate to a packaged circuit including a lead frame having at least one recess pattern on an internal surface thereof. The at least one recess pattern includes a perimeter recess that defines a perimeter around one or more raised surfaces. The packaged circuit also includes a component having one or more terminals. One of the terminals is mounted to the one or more raised surfaces such that the terminal covers the perimeter recess, wherein the perimeter recess has a size and shape such that the recess is proximate a perimeter of the terminal. The packaged circuit also includes component attach adhesive between the single terminal of the component and the one or more raised surfaces of the lead frame.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: January 3, 2017
    Assignee: Intersil Americas LLC
    Inventors: Randolph Cruz, Loyde Milton Carpenter, Jr.
  • Patent number: 9536832
    Abstract: A method of forming an interconnect structure includes providing a first dielectric layer, patterning a wire opening in a first dielectric layer, lining the wire opening with a metal liner and includes filling the wire opening with a first conductive material. The method also includes depositing a first cap on the first dielectric layer, depositing a second dielectric layer, and patterning a via trench in the second dielectric layer. The method also includes depositing a metal liner, removing the metal liner from a via junction, and enlarging the contact area. The method also includes filling the via trench with a second conductive material to form a via.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: January 3, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Effendi Leobandung
  • Patent number: 9496228
    Abstract: In various embodiments, an integrated circuit is provided. The integrated circuit may include a semiconductor chip and an electrically conductive composite material fixed to the semiconductor chip, wherein the electrically conductive composite material may include a metal, and wherein a coefficient of thermal expansion (CTE) value of the electrically conductive composite material may be lower than the CTE value of the metal.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: November 15, 2016
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Edward Fuergut, Joachim Mahler, Ivan Nikitin
  • Patent number: 9497861
    Abstract: Methods and apparatus for an interposer with a dam used in packaging dies are disclosed. An interposer may comprise a metal layer above a substrate. A dam or a plurality of dams may be formed above the metal layer. A dam surrounds an area of a size larger than a size of a die which may be connected to a contact pad above the metal layer within the area. A dam may comprise a conductive material, or a non-conductive material, or both. An underfill may be formed under the die, above the metal layer, and contained within the area surrounded by the dam, so that no underfill may overflow outside the area surrounded by the dam. Additional package may be placed above the die connected to the interposer to form a package-on-package structure.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: November 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Lin Lu, Kai-Chiang Wu, Yen-Ping Wang, Shih-Wei Liang, Ching-Feng Yang
  • Patent number: 9490192
    Abstract: A semiconductor structure includes a through via, a molding surrounding the through via, a dielectric layer disposed over the die, the through via and the molding, and a conductive member disposed within the dielectric layer, disposed over the through via, and electrically connected with the through via, wherein the conductive member includes a first protruding portion and a second protruding portion, and the first protruding portion is laterally protruded from the through via along a first direction in a first length, and the second protruding portion is laterally protruded from the through via along a second direction in a second length, and the first direction is substantially orthogonal to the second direction, and the first length is substantially greater than the second length.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: November 8, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Ying-Ju Chen, Hsien-Wei Chen
  • Patent number: 9460937
    Abstract: Provided are a hybrid substrate, a semiconductor package including the same, and a method for fabricating the semiconductor package. The hybrid substrate may include an insulation layer, and an organic layer. The insulation layer may include a top, a bottom opposite to the top, and a conductive pattern having different pitches. The organic layer may be connected to the bottom of the insulation layer, and may include a circuit pattern connected to the conductive pattern. The conductive pattern may include a first metal pattern, and a second conductive pattern. The first metal pattern may have a first pitch, and may be disposed in the top of the insulation layer. The second conductive pattern may have a second pitch greater than the first pitch, and may be extended from the first metal pattern to be connected to the circuit pattern through the insulation layer.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: October 4, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Daewoo Son, Chulwoo Kim
  • Patent number: 9455160
    Abstract: The method comprises providing a carrier, providing a plurality of semiconductor chips, the semiconductor chips each comprising a first main face and a second main face opposite to the first main face and side faces connecting the first and second main faces, placing the semiconductor chips on the carrier with the second main faces facing the carrier, and applying an encapsulation material to the side faces of the semiconductor chips.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: September 27, 2016
    Assignee: Infineon Technologies AG
    Inventors: Daniel Porwol, Edward Fuergut
  • Patent number: 9449876
    Abstract: A method of separating individual dies of a semiconductor wafer includes forming a metal layer on a first surface of a semiconductor wafer, the semiconductor wafer including a plurality of dies, separating the plurality of dies from one another, and electrical discharge machining the metal layer into individual segments each of which remains attached to one of the dies. A corresponding semiconductor die produced by such a method is also provided.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: September 20, 2016
    Assignee: Infineon Technologies AG
    Inventors: Michael Roesner, Gudrun Stranzl, Manfred Schneegans
  • Patent number: 9426914
    Abstract: Systems and methods provide for a device including a film having a shape that defines an interior region. The device may also include one or more electronic components disposed within the interior region of the film, and a hardened thermo-set resin within the interior region, wherein the thermo-set resin encompasses the electronic components and substantially fills the interior region of the film. In one example, printed content is coupled to a surface of the film. In addition, the thermo-set resin may include an additive that is configured to absorb and distribute heat generated by the electronic components.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: August 23, 2016
    Assignee: Intel Corporation
    Inventors: Peter Davison, David Pidwerbecki
  • Patent number: 9418906
    Abstract: In some embodiments an Integrated Circuit package includes a plurality of system functional pins, at least one system functional pin depopulation zone, and at least one non-system functional pin located in the at least one functional pin depopulation zone. Other embodiments are described and claimed.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: August 16, 2016
    Assignee: Intel Corporation
    Inventors: Mark B. Trobough, Christopher S. Baldwin
  • Patent number: 9373610
    Abstract: A device includes an inter-layer dielectric, a device die under the inter-layer dielectric; and a die-attach film under the inter-layer dielectric and over the device die, wherein the die-attach film is attached to the device die. A plurality of redistribution lines includes portions level with the die-attach film. A plurality of Z-interconnects is electronically coupled to the device die and the plurality of redistribution lines. A polymer-comprising material is under the inter-layer dielectric. The device die, the die-attach film, and the plurality of Z-interconnects are disposed in the polymer-comprising material.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: June 21, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Lin, Ming-Da Cheng, Meng-Tse Chen, Wen-Hsiung Lu, Kuei-Wei Huang, Chung-Shi Liu
  • Patent number: 9368422
    Abstract: One embodiment sets forth an integrated circuit package that includes a substrate, one or more devices mounted on the substrate, a layer of under-fill configured to secure the one or more devices on the substrate, and a solder trench formed in the substrate, where the aggregate volume of the solder trench is large enough to capture a flow of excess under-fill during fabrication. One advantage of the disclosed integrated circuit package is that the solder trench is used in lieu of solder dam structures, thereby allowing a stencil to be lowered closer to the substrate surface during fabrication, which facilitates depositing solder paste during fabrication.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: June 14, 2016
    Assignee: NVIDIA Corporation
    Inventors: Leilei Zhang, Ron Boja, Abraham F. Yee, Zuhair Bokharey
  • Patent number: 9368463
    Abstract: Technique capable of achieving reliability improvement of a semiconductor device even if temperature rising of an operation guarantee temperature of the semiconductor device is performed is provided. Gap portions are provided among a plurality of pads, and a glass coat composed of, for example, a silicon oxide film or a silicon nitride film is embedded in the gap portions. The glass coat is provided in order to secure electrical insulation among the pads, and coats outer edge portions of the pads. Trenches are formed so as to be adjacent to regions, which are coated with the glass coat, of the outer edge portions of the pads.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: June 14, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Shiko Shin, Takayuki Saito, Hiroshi Horibe
  • Patent number: 9368398
    Abstract: An interconnect structure and a method of fabrication of the same are introduced. In an embodiment, a post passivation interconnect (PPI) structure is formed over a passivation layer of a substrate. A bump is formed over the PPI structure. A molding layer is formed over the PPI structure. A film is applied over the molding layer and the bump using a roller. The film is removed from over the molding layer and the bump, and the remaining material of the film on the molding layer forms the protective layer. A plasma cleaning is preformed to remove the remaining material of the film on the bump.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: June 14, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Hsiung Lu, Wei-Yu Chen, Hsuan-Ting Kuo, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 9362219
    Abstract: A heat sink has a fixation surface and a heat release surface opposite from the fixation surface. A fin is provided in a central portion of the heat release surface. An insulating member is provided on the fixation surface of the heat sink. An electroconductive member is provided on the insulating member. A semiconductor chip is provided on the electroconductive member. A metal frame is connected to the semiconductor chip. A molding resin covers the heat sink, the insulating member, the electroconductive member, the semiconductor chip, and the metal frame so that the fin is exposed to outside. A hole extends through a peripheral portion of the heat sink and a peripheral portion of the molding resin. The semiconductor module is mounted on a cooling jacket by passing a screw through the hole.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: June 7, 2016
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Tatsuya Kawase, Mikio Ishihara, Noboru Miyamoto
  • Patent number: 9362210
    Abstract: Metal leadframes, semiconductor packages made using the leadframes, and methods of making the leadframes and packages are disclosed. In one embodiment, the leadframe includes a rectangular frame. A chip pad and a plurality of leads are within the frame. The lower side of the chip pad and the leads includes one or more vertically recessed horizontal surfaces. The upper side of the chip pad may include a groove around a chip mounting region. In a package, the chip pad supports a semiconductor chip electrically connected to the leads. The lower side of the chip pad and leads are exposed at an exterior surface of the package body. Encapsulant material underfills the recessed lower surfaces of the chip pad and leads, thereby locking them to the encapsulant material. A wire may be reliably bonded to the chip pad within the groove formed in the upper side thereof.
    Type: Grant
    Filed: February 10, 2013
    Date of Patent: June 7, 2016
    Assignee: Amkor Technology, Inc.
    Inventors: Byung Hoon Ahn, Jae Hun Ku, Young Suk Chung, Suk Gu Ko, Sung Sik Jang, Young Nam Choi, Won Chul Do
  • Patent number: 9343427
    Abstract: A method of manufacturing a semiconductor device that can be transferred to a circuit board with improved product reliability, and a semiconductor device manufactured according to the method, are described. A non-limiting example of the manufacturing method includes preparing a wafer having multiple semiconductor die portions formed on the semiconductor wafer, performing a sawing operation to separate the multiple semiconductor die portions into multiple discrete semiconductor die, arranging the multiple discrete semiconductor die on an adhesive member, encapsulating the multiple semiconductor die using an encapsulant, and performing a second sawing operation upon the encapsulated multiple semiconductor die to produce multiple individual encapsulated semiconductor devices.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: May 17, 2016
    Assignee: Amkor Technology, Inc.
    Inventors: Jin Seong Kim, In Bae Park, Kwang Seok Oh
  • Patent number: 9337087
    Abstract: Various embodiments facilitate die protection for an integrated circuit. In one embodiment, a multilayer structure is formed in multiple levels and along the edges of a die to prevent and detect damages to the die. The multilayer structure includes a support layer, a first plurality of dielectric pillars overlying the support layer, a metal layer that fills spaces between the first plurality of dielectric pillars, an insulation layer overlying the first plurality of dielectric pillars and the metal layer, a second plurality of dielectric pillars overlying the insulation layer, and a second metal layer that fills spaces between the second plurality of dielectric pillars.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: May 10, 2016
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: John H. Zhang, Lawrence A. Clevenger, Carl Radens, Yiheng Xu, Byoung Youp Kim, Walter Kleemeier