Patents Examined by Stephen Jones
  • Patent number: 8653905
    Abstract: Provided is a high voltage wideband pulse attenuator having an attenuation value self-correction function. The high voltage wideband pulse attenuator includes an input unit for receiving a pulse signal, a T-shaped attenuator circuit for attenuating the pulse signal, an output unit for outputting the pulse signal attenuated by the attenuator circuit, and a capacitive divider circuit for dividing a voltage of the pulse signal input through the input unit or the pulse signal attenuated by the attenuator circuit. Using the capacitive divider circuit, the high voltage wideband pulse attenuator can easily measure an error of an attenuation value caused by a change in the resistance of T-shaped array resistor units in a process of attenuating an input pulse signal of tens of kV or more. In particular, the pulse attenuator can measure its performance by itself without test assisting devices, and check a state of an attenuated pulse in real-time.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: February 18, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung Kab Ryu, Kyung Hoon Lee
  • Patent number: 8653910
    Abstract: An easily bendable high-frequency signal transmission line includes a dielectric body including a protection layer and dielectric sheets laminated on each other, a surface and an undersurface. A signal line is a linear conductor disposed in the dielectric body. A ground conductor is disposed in the dielectric body, faces the signal line via the dielectric sheet, and continuously extends along the signal line. A ground conductor is disposed in the dielectric body, faces the ground conductor via the signal line sandwiched therebetween, and includes a plurality of openings arranged along the signal line. The surface of the dielectric body on the side of the ground conductor with respect to the signal line is in contact with a battery pack.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: February 18, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Noboru Kato, Shigeru Tago, Jun Sasaki, Junichi Kurita, Satoshi Sasaki
  • Patent number: 8648666
    Abstract: A multimode frontend circuit of the present invention comprises two transmission paths. Each of the transmission paths comprises two input/output lines, a first transmission line having one end connected to one of the input/output lines and the other end connected to the other input/output line, a second transmission line connected to the one of the input/output lines and the other end connected to the other input/output line, and one or more termination switch circuits. The termination switch circuit or circuits comprise a switch having one end connected to one of the first and second transmission lines and a termination circuit connected to the other end of the switch. Each of the transmission lines may comprise one or more short-circuiting switches. The short-circuiting switch or switches are capable of short-circuiting between the two transmission lines at positions at the same electrical length from one of the input/output lines.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: February 11, 2014
    Assignee: NTT DoCoMo, Inc.
    Inventors: Kunihiro Kawai, Hiroshi Okazaki, Shoichi Narahashi
  • Patent number: 8648665
    Abstract: Electrical apparatus for connecting a radio frequency power-supply having two outputs to a load includes two radio frequency transmission-lines, each one connected to a corresponding power-supply output. A transformer arrangement connects the two transmission-lines to the load. Each transmission-line includes a series-connected pair of twelfth-wave transmission-line sections. The series-connection between the twelfth wave transmission-line sections in one transmission line is connected to the series-connection between the twelfth-wave transmission-line sections in the other by a device having an adjustable impedance.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: February 11, 2014
    Assignee: Coherent, Inc.
    Inventors: Frederick W. Hauer, Joel Fontanella, Patrick T. Tracy
  • Patent number: 8648668
    Abstract: Disclosed is a structure for precision control of electrical impedance of signal transmission circuit board. A substrate forms thereon a plurality of first signal transmission lines, and a first covering insulation layer is formed on a first surface of the substrate to cover a surface of each first signal transmission lines and each spacing section formed between adjacent first signal transmission lines. Each first signal transmission lines can transmit a differential mode signal or a common mode signal.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: February 11, 2014
    Assignee: Advanced Flexible Circuits Co., Ltd.
    Inventors: Gwun-Jin Lin, Kuo-Fu Su
  • Patent number: 8643449
    Abstract: In accordance with a representative embodiment, an impedance matching circuit for use at an output stage of a power amplifier is disclosed. The impedance matching circuit comprises: an input port for receiving a frequency band signal; and a plurality of paths, each path being allocated with a principal band signal to be transmitted therethrough and including a path on-off network and a fixed-value impedance matching network. Depending on a type of the received frequency band signal, the path on-off network is configured to activate a selected one of the plurality of paths by rendering an input impedance of the selected path to have a lower absolute magnitude so that the signal is transmitted therethrough, and to deactivate the remaining paths of the plurality of paths by rendering the input impedance thereof to have a higher absolute magnitude so that the signal is not transmitted therethrough.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: February 4, 2014
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Jung Hyun Kim, Un Ha Kim, Sang Hwa Jung, Young Kwon
  • Patent number: 8629742
    Abstract: An impedance synthesis method for fundamental and harmonic frequencies using multi section tuners, because of the huge amount of possible tuning permutations, employs a search strategy based on the minimization of an ERROR FUNCTION (EF), in two steps: in a first step a coarse calibration grid is generated and the raw area is found which allows an approximate solution to the tuning task at the fundamental frequency; then a fine impedance grid is generated around the first solution using calibrated and interpolated points at all harmonic frequencies; a second search step, using the same EF, then allows fine tuning. Among the several, numerically found solutions, the most reliable one is selected based on a sensitivity criterion, which calculates the impedance change for a possible small error in repeatability of each tuning element and selects the one with the lowest sensitivity to element setting errors.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: January 14, 2014
    Assignee: FOCUSMW IP. Inc.
    Inventor: Christos Tsironis
  • Patent number: 8624692
    Abstract: Unwanted radiation is reduced in a high-frequency signal transmission line that includes a ground conductor provided with an opening that overlaps a signal line. A dielectric element assembly has a relative dielectric constant ?1 and has a first principal surface and a second principal surface. A signal line is provided in the dielectric element assembly. A ground conductor is provided in the dielectric element assembly and on the first principal surface side with respect to the signal line, faces the signal line, and is provided with an opening that overlaps the signal line. A high dielectric constant layer has a relative dielectric constant ?2 higher than the relative dielectric constant ?1 and is provided on the first principal surface so as to overlap the opening.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: January 7, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Noboru Kato, Shigeru Tago, Jun Sasaki, Satoshi Sasaki
  • Patent number: 8624693
    Abstract: A flexible high-frequency signal transmission line includes a dielectric body including laminated flexible dielectric layers. A signal line is provided in the dielectric body. A grounding conductor is arranged in the dielectric body to be opposed to the signal line via one of the dielectric layers. The grounding conductor is of a ladder structure including a plurality of openings and a plurality of bridges arranged alternately along the signal line. A characteristic impedance of the signal line changes between two adjacent ones of the plurality of bridges such that the characteristic impedance of the signal line rises from a minimum value to an intermediate value and to a maximum value and falls from the maximum value to the intermediate value and to the minimum value in this order.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: January 7, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Noburo Kato
  • Patent number: 8624687
    Abstract: In some embodiments a second differential signal pair is located near a first differential signal pair. The second differential signal pair switches polarity near a middle point of a routing length of the second differential signal pair. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: January 7, 2014
    Assignee: Intel Corporation
    Inventor: Xiaoning Ye
  • Patent number: 8604892
    Abstract: Provided are a high frequency attenuator to attenuate high frequency energy by a minute amount and a high frequency device using the high frequency attenuator. The attenuator includes a dielectric base, a ground conductor provided on a back surface of the base, a first and second strip conductors provided on a front surface of the base, and a resistor. The first and second strip conductors constitute first and second high frequency transmission lines respectively in conjunction with the ground conductor and the base. The first strip conductor has a first end portion, and the second strip conductor has a second end portion which forms a gap with the first end portion. The resistor is provided in the gap. The first end portion is inclined with respect to the first high frequency transmission line, and the second end portion is inclined with respect to the second high frequency transmission line.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: December 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiyuki Ikuma
  • Patent number: 8598965
    Abstract: An attenuator is provided. The attenuator includes a first resistor, which is electrically connected to an input node; a nanowire, which is connected to the first resistor in series, for filtering low frequency signal; a second resistor, having an output node, which is electrically connected to the nanowire; wherein when a low frequency voltage is received by the input node, the nanowire filters the low frequency voltage such that the output node generates an output voltage lower than the low frequency voltage.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: December 3, 2013
    Assignee: National Applied Research Laboratories
    Inventors: Mao-Chen Liu, Chia-Hua Ho
  • Patent number: 8587385
    Abstract: A printed wiring board includes a first terminal array and a second terminal array comprising a plurality of terminals, a first differential signal line connecting a first terminal of the first terminal array to a predetermined number of terminals including a second terminal of the second terminal array, a second differential signal line connecting a third terminal of the first terminal array to a number of terminals including a fourth terminal of the second terminal array, which is bigger than the predetermined number of terminals wherein at least one of a line width and a line interval of one pair signal lines configuring the first differential signal line and the second differential signal line is determined so that differential impedance of the second differential signal line becomes higher compared with differential impedance of the first differential signal line.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: November 19, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kengo Umeda
  • Patent number: 8581673
    Abstract: In a circuit module in which a plurality of non-reciprocal circuit elements, each of which does not have a yoke, are mounted, the occurrence of magnetic coupling between the non-reciprocal circuit elements is significantly reduced and prevented. Core isolators are not arranged such that, in a state in which the direction of magnetic flux and the direction of magnetic flux are the same, the core isolators are aligned in the direction of the magnetic flux. Specifically, the core isolators generate the magnetic flux from left to right. The core isolators are aligned so as to be inclined relative to the magnetic flux. Thus, extension of the magnetic flux through the core isolator in a state of being directed in the same direction as that of the magnetic flux is significantly reduced and prevented.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: November 12, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshiyuki Ishiyama, Yasuhiro Takahashi, Koji Furutani
  • Patent number: 8570114
    Abstract: A defected ground structure with shielding effect is provided. The structure includes a dielectric layer, a defected metal layer, a grounded metal layer and at least a conductive mushroom-like structure. The defected metal layer has a line-shaped opening and is disposed in the dielectric layer. The conductive mushroom-like structure is disposed between the defected metal layer and the grounded metal layer and is arranged along an extending direction of the line-shaped opening periodically. The conductive mushroom-like structure includes a laterally extending member and a vertically extending member. The laterally extending member is parallel to the defected metal layer and a distance is maintained away from the defected metal layer. The projection area of the laterally extending member on the defected metal layer covers a length of the line-shaped opening corresponding to the laterally extending member. The vertically extending member connects the laterally extending member and the grounded metal layer.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: October 29, 2013
    Assignee: National Taiwan University
    Inventors: Tzong-Lin Wu, Yu-Hao Hsu, Chung-Hao Tsai
  • Patent number: 8564380
    Abstract: A central conductor assembly for a non-reciprocal circuit device, at least a first central conductor constituting a first inductance element and a second central conductor constituting a second inductance element being integrally formed in a laminate comprising pluralities of magnetic layers, the first central conductor being formed by series-connecting first and second lines formed on a first main surface of the laminate to third lines formed in the laminate through via-holes, and the second central conductor being formed on the first main surface of the laminate such that it extends between the first and second lines and crosses the third lines via a magnetic layer.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: October 22, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yasushi Kishimoto, Hiroshi Matsuno, Kenji Kuramoto
  • Patent number: 8564383
    Abstract: A signal converter includes: a dielectric substrate; a first conductor layer disposed on one of opposite sides of the dielectric substrate, while including an input section receiving high-frequency signals inputted thereto; a second conductor layer disposed on the other of the opposite sides of the dielectric substrate; and plural first conducting sections penetrating the dielectric substrate for electrically connecting the first and second conductor layers, while forming a waveguide in the inside of the dielectric substrate with the first and second conductor layers. The first conductor layer is disposed on the dielectric substrate without occupying a separator section disposed on the dielectric substrate. The separator section includes first and second sections extend from the input section towards the waveguide. The first and second sections are separated away from each other for gradually increasing their interval in proportion to a distance away from the input section towards the waveguide.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 22, 2013
    Assignee: Fujitsu Limited
    Inventors: Toshihiro Shimura, Yoji Ohashi
  • Patent number: 8558638
    Abstract: An impedance transformer includes a first transmission line having a first impedance and provided over a first substrate having a first permittivity; a second transmission line and a third transmission line having an impedance lower than the first impedance and provided over a second substrate having a permittivity higher than the first permittivity, the second transmission line and the third transmission line being electrically coupled to the first transmission line; and a resistor coupled between the second transmission line and the third transmission line.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 15, 2013
    Assignee: Fujitsu Limited
    Inventor: Satoshi Masuda
  • Patent number: 8558637
    Abstract: A circuit device includes a multilayer circuit carrier, a first signal transmission line, a second signal transmission line, a signal line transition element, a first impedance transformer, and a second impedance transformer. The multilayer circuit carrier includes a first layer and a second layer. The first signal transmission line is on the surface of the first layer. The second signal transmission line is on the surface of the second layer. The signal line transition element passes through the first layer and the second layer, and has a first signal terminal and a second signal terminal. The first impedance transformer is on the surface of the first layer and electrically connected between the first signal transmission line and the first signal terminal. The second impedance transformer is on the surface of the second layer and electrically connected between the second signal transmission line and the second signal terminal.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: October 15, 2013
    Assignees: Mediatek Inc., International Business Machines Corporation
    Inventors: Duixian Liu, Ho-Chung Chen, Brian Allan Floyd
  • Patent number: 8552809
    Abstract: Systems and methods for a stacked waveguide circulator are described. The stacked waveguide circulator may comprise a first side and a second side. The stacked waveguide circulator may also comprise a top and a bottom opposite the top. The top and the bottom may be adjacent to the first and second sides. The stacked waveguide circulator may also comprise a a first port and a second port on the first side. The first port may be vertically above the second port on the first side. Further, the stacked waveguide circulator may comprise a third port on the second side. The stacked waveguide circulator may comprise a first magnet on the top. The first magnet may be configured to assist in directing signals between the first, second, and third ports.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: October 8, 2013
    Assignee: Aviat U.S., Inc.
    Inventors: Edwin Nealis, Ying Shen