Patents Examined by Thanh T. Nguyen
  • Patent number: 11887894
    Abstract: A method for processing a wide band gap semiconductor wafer includes: depositing a support layer including semiconductor material at a back side of a wide band gap semiconductor wafer, the wide band gap semiconductor wafer having a band gap larger than the band gap of silicon; depositing an epitaxial layer at a front side of the wide band gap semiconductor wafer; and splitting the wide band gap semiconductor wafer along a splitting region to obtain a device wafer comprising at least a part of the epitaxial layer, and a remaining wafer comprising the support layer.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Infineon Technologies AG
    Inventors: Francisco Javier Santos Rodriguez, Günter Denifl, Tobias Hoechbauer, Martin Huber, Wolfgang Lehnert, Roland Rupp, Hans-Joachim Schulze
  • Patent number: 11862583
    Abstract: A semiconductor wafer thinned by a stealth lasing process, and semiconductor dies formed therefrom. After formation of an integrated circuit layer on a semiconductor wafer, the wafer may be thinned by focusing a laser at discrete points in the wafer substrate beneath the surface of the wafer. Upon completion of stealth lasing in one or more planar layers in the substrate, a portion of the substrate may be removed, leaving the wafer thinned to a desired final thickness.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: January 2, 2024
    Assignee: Western Digital Technologies, Inc.
    Inventors: Chee Keong Loh, Foo You Chow, Ridzuan Hanapi, Boon Soo Lim
  • Patent number: 11862576
    Abstract: Disclosed aspects include a semiconductor die including a substrate having a semiconductor surface including circuitry. A top metal layer is above the semiconductor surface including top metal lines that are electrically connected through a metal stack including metal interconnects that electrically connect to the circuitry. The top metal lines are configured in a primary orientation that collectively represents at least 50% of a total length of the top metal lines in a first direction. The top metal layer includes bond pads exposed from a passivation layer. The metal features are positioned lateral to and not directly electrically connected to the top metal layer and/or are positioned on the passivation layer. At least a majority of a total area of the metal features is not over metal interconnects. The metal features have a length direction oriented in a second direction that is at least essentially perpendicular relative to the primary orientation.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: January 2, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Christlyn Faith Hobrero Arias, Rafael Jose Lizares Guevara
  • Patent number: 11862552
    Abstract: Methods/structures of forming embedded inductor structures are described. Embodiments include forming a first interconnect structure on a dielectric material of a substrate, selectively forming a magnetic material on a surface of the first interconnect structure, forming an opening in the magnetic material, and forming a second interconnect structure in the opening. Build up layers are then formed on the magnetic material.
    Type: Grant
    Filed: January 3, 2022
    Date of Patent: January 2, 2024
    Assignee: Intel Corporation
    Inventors: Sai Vadlamani, Prithwish Chatterjee, Robert A. May, Rahul S. Jain, Lauren A. Link, Andrew J. Brown, Kyu Oh Lee, Sheng C. Li
  • Patent number: 11854879
    Abstract: A Cu3Sn electrical interconnect and method of making same in an electrical device, such as for hybrid bond 3D-integration of the electrical device with one or more other electrical devices. The method of forming the Cu3Sn electrical interconnect includes: depositing a Sn layer in the via hole; depositing a Cu layer atop and in contact with the Sn layer; and heating the Sn layer and the Cu layer such that the Sn and Cu layers diffuse together to form a Cu3Sn interconnect in the via hole. During the heating, a diffusion front between the Sn and Cu layers moves in a direction toward the Cu layer as initially deposited, such that any remaining Cu layer or any voids formed during the diffusion are at an upper region of the formed Cu3Sn interconnect in the via hole, thereby allowing such voids or remaining material to be easily removed.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: December 26, 2023
    Assignee: Raytheon Company
    Inventors: Andrew Clarke, John J. Drab, Faye Walker
  • Patent number: 11855910
    Abstract: Systems and methods for synchronizing cloud resources are disclosed. An example method may include receiving a first request to synchronize first target cloud resources to a first specified state defined in a configuration repository, generating one or more first configuration commands corresponding to the first request, the one or more first configuration commands associated with a first cloud provider and a first cloud configuration framework, and executing the one or more first configuration commands to set a state of the first target cloud resources to the first specified state.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: December 26, 2023
    Assignee: Intuit Inc.
    Inventors: Brett Weaver, Edward Lee, Thomas C. Bishop, Jerome M. Kuptz, Mukulika Kapas, Ameen Radwan, Gennadiy Ziskind, Grant L. Hoffman
  • Patent number: 11855058
    Abstract: Provided are a package structure and a method of forming the same. The method includes providing a first package having a plurality of first dies and a plurality of second dies therein; performing a first sawing process to cut the first package into a plurality of second packages, wherein one of the plurality of second packages comprises three first dies and one second die; and performing a second sawing process to remove the second die of the one of the plurality of second packages, so that a cut second package is formed into a polygonal structure with the number of nodes greater than or equal to 5.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Hung Lin, Hui-Min Huang, Chang-Jung Hsueh, Wan-Yu Chiang, Ming-Da Cheng, Mirng-Ji Lii
  • Patent number: 11854867
    Abstract: A method for forming a semiconductor structure includes receiving a first die having a first interconnect structure and a first bonding layer over the first interconnect structure, and a second die having a second interconnect structure and a second bonding layer over the second interconnect structure; forming a recess indenting into the first bonding layer; and forming a positioning member on the second bonding layer. The method further includes bonding the second die over the first die; and disposing the positioning member into the recess. The positioning member includes dielectric, is surrounded by the first bonding layer, and is isolated from the first interconnect structure and the second interconnect structure.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventor: Jen-Yuan Chang
  • Patent number: 11855010
    Abstract: A semiconductor structure is provided. The semiconductor structure includes two circuit regions, two inner seal rings, an outer seal ring, a first redundant region, and an electrical circuit. Each of the inner seal rings surrounding one of the circuit regions. The outer seal ring is disposed around the inner seal rings, and each of the inner seal rings contacts the outer seal ring at different interior corners of the outer seal ring. The first redundant region is located between at least one of the inner seal rings and the outer seal ring. The electrical circuit is formed in the first redundant region and electrically connected to at least one of the circuit regions.
    Type: Grant
    Filed: August 6, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shan-Yu Huang, Shih-Chang Chen, Hsiao-Wen Chung, Yilun Chen, Huang-Sheng Lin
  • Patent number: 11856804
    Abstract: An imaging display device which can quickly display a captured image is provided. The imaging display device includes an imaging portion on a first surface and a display portion on a second surface that is opposite to the first surface. The imaging portion includes a photoelectric conversion element configured to receive light delivered to the first surface. The display portion includes a light-emitting element configured to emit light in a direction opposite to the first surface. A pixel in the imaging portion is electrically connected to a pixel in the display portion. An image signal obtained at the imaging portion can be directly input to the display portion. Accordingly, the time delay due to data conversion can be eliminated, so that a captured image can be displayed in a moment.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: December 26, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takayuki Ikeda, Naoto Kusumoto
  • Patent number: 11848204
    Abstract: Plasma processing apparatus and associated methods are provided. In one example, a plasma processing apparatus includes a plasma chamber. The plasma processing apparatus includes a dielectric wall forming at least a portion of the plasma chamber. The plasma processing apparatus includes an inductive coupling element located proximate the dielectric wall. The plasma processing apparatus includes an ultraviolet light source configured to emit an ultraviolet light beam onto a metal surface that faces an interior volume of the plasma chamber. The plasma processing apparatus includes a controller configured to control the ultraviolet light source.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: December 19, 2023
    Assignees: Beijing E-Town Semiconductor Technology Co., Ltd, Mattson Technology, Inc.
    Inventors: Stephen E. Savas, Shawming Ma
  • Patent number: 11848243
    Abstract: A molded semiconductor package includes: semiconductor dies attached to a first side of a leadframe and electrically interconnected to form a power electronic circuit; a substrate attached to a second side of the leadframe opposite the first side, and including a metal body and electrically insulative material that separates the metal body from the leadframe; and a molding compound encapsulating the dies. The metal body includes a first surface in contact with the electrically insulative material, a second surface opposite the first surface and which is not covered by the molding compound, and a bevelled edge extending between the first and second surfaces. The bevelled edge of the metal body has a first sloped side face that extends from the first surface to an apex of the bevelled edge, and a second sloped side face that extends from the apex to the second surface. Methods of producing the package are also described.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: December 19, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Man Kyo Jong, Joon Seo Son
  • Patent number: 11844212
    Abstract: A semiconductor memory device includes a stack structure including a plurality of layers vertically stacked on a substrate. Each of the plurality of layers includes a first dielectric layer, a semiconductor layer, and a second dielectric layer that are sequentially stacked, and a first conductive line in the second dielectric layer and extending in a first direction. The device also includes a second conductive line extending vertically through the stack structure, and a capacitor in the stack structure and spaced apart from the second conductive line. The semiconductor layer includes semiconductor patterns extending in a second direction intersecting the first direction between the first conductive line and the substrate. The second conductive line is between a pair of the semiconductor patterns adjacent to each other in the first direction. An end of each of the semiconductor patterns is electrically connected to a first electrode of the capacitor.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: December 12, 2023
    Inventors: Kiseok Lee, Junsoo Kim, Hui-Jung Kim, Bong-Soo Kim, Satoru Yamada, Kyupil Lee, Sunghee Han, HyeongSun Hong, Yoosang Hwang
  • Patent number: 11837474
    Abstract: Cyclic etch methods comprise the steps of: i) exposing a SiN layer covering a structure on a substrate in a reaction chamber to a plasma of hydrofluorocarbon (HFC) to form a polymer layer deposited on the SiN layer that modifies the surface of the SiN layer, the HFC having a formula CxHyFz where x=2-5, y>z, the HFC being a saturated or unsaturated, linear or cyclic HFC; ii) exposing the polymer layer deposited on the SiN layer to a plasma of an inert gas, the plasma of the inert gas removing the polymer layer deposited on the SiN layer and the modified surface of the SiN layer on an etch front; and iii) repeating the steps of i) and ii) until the SiN layer on the etch front is selectively removed, thereby forming a substantially vertically straight SiN spacer comprising the SiN layer on the sidewall of the structure.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: December 5, 2023
    Assignee: American Air Liquide, Inc.
    Inventors: Xiangyu Guo, James Royer, Venkateswara R. Pallem, Nathan Stafford
  • Patent number: 11830836
    Abstract: A semiconductor device includes a semiconductor substrate having a bonding pad, and a first dielectric layer disposed over the semiconductor substrate. A portion of the bonding pad is exposed by the first dielectric layer. The semiconductor device also includes a metal oxide layer disposed over the portion of the bonding pad, and a wire bond penetrating through the metal oxide layer to bond to the bonding pad. The portion of the bonding pad is entirely covered by the metal oxide layer and the wire bond.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: November 28, 2023
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tse-Yao Huang
  • Patent number: 11830824
    Abstract: Exemplary methods of processing a semiconductor substrate may include forming a layer of dielectric material on the semiconductor substrate. The methods may include performing an edge exclusion removal of the layer of dielectric material. The methods may include forming a mask material on the semiconductor substrate. The mask material may contact the dielectric material at an edge region of the semiconductor substrate. The methods may include patterning an opening in the mask material overlying a first surface of the semiconductor substrate. The methods may include etching one or more trenches through the semiconductor substrate.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: November 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Amirhasan Nourbakhsh, Lan Yu, Joseph F. Salfelder, Ki Cheol Ahn, Tyler Sherwood, Siddarth Krishnan, Michael Jason Fronckowiak, Xing Chen
  • Patent number: 11824015
    Abstract: Chip sealing structures and methods of manufacture are described. In an embodiment, a chip structure includes a main body area formed of a substrate, a back-end-of-the-line (BEOL) build-up structure spanning over the substrate, and chip edge sidewalls extending from a back surface of the substrate to a top surface of the BEOL build-up structure and laterally surrounding the substrate and the BEOL build-up structure. In accordance with embodiments, the chip structure may further include a conformal sealing layer covering at least a first chip edge sidewall of the chip edge sidewalls and a portion of the top surface of the BEOL build-up structure, and forming a lip around the top surface of the BEOL build-up structure.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: November 21, 2023
    Assignee: Apple Inc.
    Inventors: Vidhya Ramachandran, Sanjay Dabral, SivaChandra Jangam, Jun Zhai, Kunzhong Hu
  • Patent number: 11817444
    Abstract: An electronic device may include a first die that may include a first set of die contacts. The electronic device may include a second die that may include a second set of die contacts. The electronic device may include a bridge interconnect that may include a first set of bridge contacts and may include a second set of bridge contacts. The first set of bridge contacts may be directly coupled to the first set of die contacts (e.g., with an interconnecting material, such as solder). The second set of bridge contacts may be directly coupled to the second set of die contacts (e.g., with solder). The bridge interconnect may help facilitate electrical communication between the first die and the second die.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: November 14, 2023
    Assignee: Intel Corporation
    Inventors: Robert L Sankman, Sairam Agraharam, Shengquan Ou, Thomas J De Bonis, Todd Spencer, Yang Sun, Guotao Wang
  • Patent number: 11810817
    Abstract: A semiconductor structure including a self-assembled monolayer for enhancing metal-dielectric adhesion and preventing metal diffusion is provided. The semiconductor structure includes a substrate and a first dielectric layer on the substrate. A contact structure is embedded in the first dielectric layer and includes a conductive line. The semiconductor structure further includes a self-assembled monolayer on the conductive line, and a second dielectric layer on the first dielectric layer and the conductive line. The self-assembled monolayer is chemically bonded to the conductive line and the second dielectric layer.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Zhen Yu Guan, Hsun-Chung Kuang
  • Patent number: 11811889
    Abstract: Systems and methods are disclosed herein to provide information to a user based on a communication from a user associated with multiple media assets. Based on the schedule of the media assets, one is selected and recommended to the user.
    Type: Grant
    Filed: December 22, 2022
    Date of Patent: November 7, 2023
    Assignee: ROVI GUIDES, INC.
    Inventors: Timothy Christensen Kelly, Benjamin Maughan, Brian Peterson, David Yon, Walter R. Klappert