Patents Examined by Tiffany Fetzner
  • Patent number: 10698057
    Abstract: A control computer for a magnetic resonance imaging system has an analog-to-digital conversion array, a multiplexer array connected to the analog-to-digital conversion array, and a control module that receives at least one input signal via the multiplexer array and the analog-to-digital conversion array. A signal processing board for a magnetic resonance imaging system has a substrate with the aforementioned components thereon that form the aforementioned control computer.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: June 30, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Guang Bao Dai, Jian Zhang Jia, Yong Chao Zhou
  • Patent number: 10641857
    Abstract: This disclosure provides a computer-implemented method for sequencing magnetic resonance imaging waveforms using a multistage sequencing hardware. The method comprises creating, with the aid of a computer processor, an active memory region that includes waveforms and schedules being played, and creating one or more buffer memory regions that contain waveforms and schedules not currently being played. Next, the waveforms and schedules in the one or more buffer memory regions may be updated while waveforms may be played in the active memory region. Upon completion of the waveform playback in the active memory region, the active and buffer memory regions may be swapped so that the former buffer memory region becomes the active memory region, and the former active memory region becomes the buffer memory region. The method may be repeated as needed until the imaging process is completed or otherwise halted.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: May 5, 2020
    Assignee: HeartVista, Inc.
    Inventors: William Overall, Juan Santos
  • Patent number: 10578692
    Abstract: According to one embodiment, a gradient coil unit for a magnetic resonance imaging apparatus includes gradient coils for forming gradient magnetic fields in mutually orthogonal three axis directions. At least one of the gradient coils includes a conductor part along a coil pattern and a holding part holding the coil pattern. A passage of a coolant is formed inside at least one of the conductor part and the holding part. The passage has a non-constant cross section.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: March 3, 2020
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Kazuhiko Tsujita, Yoshitomo Sakakura
  • Patent number: 10564235
    Abstract: An imaging unit producing images, and a control unit controlling the imaging unit. The imaging device further comprises: a reference clock unit generating a reference clock; and a signal input/output unit provided between the imaging unit and the control unit and inputting and outputting signals in synchronization with the reference clock generated by the reference clock unit. The control unit comprises: generating unit generating a plurality of control signals; transmitting unit transmitting the plural control signals; receiving unit receiving measurement signals; and extraction unit extracting the measurement signal when the reception times of the measurement signals received by the receiving unit agrees with the extraction timing generated by the generating unit.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: February 18, 2020
    Assignee: MRTechnology, Inc.
    Inventors: Tomoyuki Haishi, Seitaro Hashimoto, Katsumi Kose
  • Patent number: 10564245
    Abstract: According to one embodiment, an RF coil storage device stores an RF coil device which receives a magnetic resonance signal from an object with a coil element in magnetic resonance imaging. This RF coil storage device includes a storage rack on which the RF coil device is placed, and processing circuitry configured to acquire an index signal which is used for determining presence/absence of a failure, from the RF coil device placed on the storage rack.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: February 18, 2020
    Assignee: Canon Medical Systems Corporation
    Inventor: Mitsuo Takagi
  • Patent number: 10557911
    Abstract: 3D printing in MRI-compatible plastic resin has been used to fabricate and implement a geometric distortion phantom for MRI and CT imaging. The sparse grid structure provides a rigid and accurate phantom with identifiable intersections that are larger than the supporting members, which produces images that are amenable to fully automated quantitative analysis using morphometric erosion, greyscale segmentation and centroiding. This approach produces a 3D vector map of geometric distortion that is useful in clinical applications where geometric accuracy is important, either in routine quality assurance or as a component of distortion correction utilities.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: February 11, 2020
    Inventor: David W. Holdsworth
  • Patent number: 10551461
    Abstract: A method of parallel magnetic resonance imaging of a body, comprising:—acquiring a set of elementary magnetic resonance images of said body from respective receiving antennas having known or estimated sensibility maps and noise covariance matrices, said elementary images being under-sampled in k-space; and performing regularized reconstruction of a magnetic resonance image of said body; wherein said step of performing regularized reconstruction of a magnetic resonance image is unsupervised and carried out in a discrete frame space. A method of performing dynamical and parallel magnetic resonance imaging of a body, comprising:—acquiring a set of time series of elementary magnetic resonance images of said body from respective receiving antennas having known or estimated sensibility maps and noise covariance matrices, said elementary images being under-sampled in k-space; and performing regularized reconstruction of a time series of magnetic resonance images of said body.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: February 4, 2020
    Assignee: Commissariat a L'Energie Atomique et aux Energies Alternatives
    Inventors: Lotfi Chaari, Sebastien Meriaux, Philippe Ciuciu, Jean-Christophe Pesquet
  • Patent number: 10551462
    Abstract: A method for performing magnetic resonance imaging with variable flip angle (VFA) readouts includes preparing longitudinal magnetization of a spin system associated with a subject to a target state, yielding a prepared longitudinal magnetization. The prepared longitudinal magnetization is converted to an image using a VFA readout sequence, wherein the VFA readout sequence comprises a plurality of radio-frequency pulses with corresponding flip-angles varying according to a modulation function.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: February 4, 2020
    Assignees: Siemens Healthcare GmbH, The Governors of the University of Alberta
    Inventors: Kelvin Chow, Richard Thompson, Bruce S. Spottiswoode
  • Patent number: 10534060
    Abstract: A magnetic resonance imaging (MRI) system, method and/or computer readable medium is configured to effect improved parallel MR imaging with reduced unfolding artifacts by using either or both of: (a) an unfolded “intermediate” diagnostic image to create a more accurate mask for use in further processing raw image data for final unfolded diagnostic images; and/or (b) an extension of coil sensitivity maps by replication (rather than curve-fitted extrapolation) for use in final unfolding of diagnostic images.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: January 14, 2020
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventor: Wayne R. Dannels
  • Patent number: 10534056
    Abstract: A system uses multiple RF coils in MR imaging and an RF (Radio Frequency) signal generator generates RF excitation pulses in anatomical regions of interest and enables subsequent acquisition of associated RF echo data. A magnetic field gradient generator generates anatomical volume select magnetic field gradients for phase encoding and readout RF data acquisition. The RF signal generator and the gradient generator substantially concurrently acquire first and second volumes of first and second different anatomical regions by providing, a first RF pulse having a first asymmetric shape followed by a successive second RF pulse substantially having the first asymmetric shape but reversed in time, to substantially reduce echo time (TE) differences between acquisition of the first and second volumes and a phase encoding magnetic field gradient prepares for acquisition of data representing the first and second volumes.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: January 14, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Vibhas S Deshpande, Gerhard Laub
  • Patent number: 10514433
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a processor and memory. The memory stores processor-executable instructions that, when executed by the processor, cause the processor to extract, based on a plurality of sagittal images at least including an intervertebral disk of a subject, an intervertebral disk region spanning across the plurality of sagittal images from spines visualized in the plurality of sagittal images; and set an imaging region of an intervertebral disk image based on the intervertebral disk region.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: December 24, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Yasuo Sakurai, Kensuke Shinoda, Yuichi Yamashita
  • Patent number: 10495717
    Abstract: A method and imaging system is provided that can control a magnetic gradient system and an RF system of an MRI system according to a calibration pulse sequence to acquire positive readout gradient (RO+) data and negative readout gradient (RO?) data. The RO+ data and the RQ? data are assembled to form complete image data sets for the RO+ data and the RQ™ data and the RO+ data and the RO? data are combined to generate the calibration data that is ghost-corrected, substantially free of ghost artifacts, or having reduced ghost artifacts compared to traditionally-acquired calibration data. Reconstruction coefficients are derived from the calibration data. The magnetic gradient system and the RF system are controlled according to an imaging pulse sequence to acquire image data and the image data is reconstructed into an image of the subject using the reconstruction coefficients.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: December 3, 2019
    Assignee: The General Hospital Corporation
    Inventors: William S. Hoge, Jonathan R. Polimeni
  • Patent number: 10463883
    Abstract: A radiation therapy system comprises a magnetic resonance imaging (MRI) system combined with an irradiation system, which can include one or more linear accelerators (linacs) that can emit respective radiation beams suitable for radiation therapy. The MRI system includes a split magnet system, comprising first and second main magnets separated by gap. A gantry is positioned in the gap between the main MRI magnets and supports the linac(s) of the irradiation system. The gantry is rotatable independently of the MRI system and can angularly reposition the linac(s). Shielding can also be provided in the form of magnetic and/or RF shielding. Magnetic shielding can be provided for shielding the linac(s) from the magnetic field generated by the MRI magnets. RF shielding can be provided for shielding the MRI system from RF radiation from the linac.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: November 5, 2019
    Assignee: ViewRay Technologies, Inc.
    Inventors: Shmaryu M. Shvartsman, Gordon D. Demeester, James F. Dempsey, John Lester Patrick
  • Patent number: 10459057
    Abstract: An image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry is configured to detect a region of body fluid flowing in a subject from time-series images acquired by scanning an imaging area including a tagged region to which a tagging pulse is applied and imaging the imaging area; generate a plurality of display images in which the detected body fluid region is displayed in a display mode determined based on a positional relation between the body fluid region and a boundary line, the boundary line determined based on the tagged region; and output time-series display images including the plurality of display images to be displayed on a display.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: October 29, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Shuhei Nitta, Taichiro Shiodera, Tomoyuki Takeguchi, Masao Yui, Satoshi Sugiura
  • Patent number: 10451692
    Abstract: A dual- or multi-resonant RF/MR transmit and/or receive antenna (1, 2) especially in the form of a planar antenna or a volume array antenna (also called antenna array) is used for MR image generation of at least two different nuclei like e.g. 1H, 19F, 3He, 13C, 23Na or other nuclei having different Larmor frequencies. The antenna is coupled by an inductive coupling device (LI) with related transmit/receive channels (T/R). By such an inductive coupling, the tuning and matching of the antenna at the different resonant frequencies is easier than in case of a galvanic connection. The dual- or multi-resonant RF/MR transmit and/or receive antenna is used in an MR imaging apparatus.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: October 22, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Christoph Leussler, Peter Mazurkewitz, Jochen Keupp
  • Patent number: 10433729
    Abstract: An exam room shielding (10) for electromagnetically shielding a magnetic resonance imaging system (2) includes: a ceiling, a floor, side walls (11) interconnecting the ceiling and the floor, and a tubular shielding device (12), which is arranged to surround an examination tube (3) of the magnetic resonance imaging system (2). Both longitudinal ends (13) of the tubular shielding device (12) are circumferentially connected to openings (14)of the side walls (11) which form the outline of an U-shaped room (15) with the longitudinal ends (13) of the tubular shielding device (12) interconnecting the lateral flanks (16) of the U-shaped room (15). A magnetic resonance imaging system (2) includes an exam room (1), with the above exam room shielding (10). An additional treatment or diagnosis device (7) can be located at an outer circumference of the tubular shielding device (12). This separates the space inside the exam room into a compartment free of RF noise, i.e.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: October 8, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johannes Adrianus Overweg, Falk Uhlemann
  • Patent number: 10436860
    Abstract: A side-looking Nuclear Magnetic Resonance (“NMR”) logging tool is designed to reduce and/or eliminate a borehole signal. The logging tool includes a magnetic assembly and a radio frequency (“RF”) transceiver antenna. The axial extent of the RF transceiver antenna has a length selected to reduce a borehole signal.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: October 8, 2019
    Assignee: HALIBURTON ENERGY SERVICES, INC
    Inventors: Lilong Li, Rebecca Jachmann, Arcady Reiderman
  • Patent number: 10429480
    Abstract: A magnetic resonance imaging apparatus according to an embodiment includes a first acquiring unit, a second acquiring unit, and a combining unit. The first acquiring unit is configured to acquire data by executing a pulse sequence based on a first radio-frequency pulse transmission condition. The second acquiring unit is configured to acquire data by executing a pulse sequence based on a second radio-frequency pulse transmission condition that is different from the first radio-frequency pulse transmission condition. The combining unit is configured to perform a combining process either on the data acquired by the first acquiring unit and the data acquired by the second acquiring unit or on data obtained by reconstructing the data acquired by the first acquiring unit and data obtained by reconstructing the data acquired by the second acquiring unit.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: October 1, 2019
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Yuichi Yamashita, Masao Yui
  • Patent number: 10429461
    Abstract: A magnetic resonance imaging device produces a magnetic field gradient with parallel driving of positive-side subcoils and negative-side subcoils with different power sources in the magnetic field gradient direction, to detect a misalignment in drive timing of the positive side and the negative side. Pulse sequences for timing misalignment detection having a slice magnetic field gradient pulse and a read-out magnetic field gradient pulse in the same direction as a magnetic field gradient of interest are executed. A positive-side slice echo and a negative-side slice echo of the magnetic field gradient are acquired. A phase difference between a positive-side projection image and a negative-side projection image is derived by computation with phase error from other factors being removed. From the slope of the phase difference with respect to a location, the drive timing misalignment between the positive-side subcoil and the negative-side subcoil of the magnetic field gradient production is detected.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: October 1, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Yo Taniguchi, Masahiro Takizawa, Takeshi Yatsuo, Atsushi Kuratani
  • Patent number: 10416258
    Abstract: A method for controlling a magnetic resonance system outputs a pulse sequence including a first slice-selective excitation pulse that excites a first slice with a first magnetization. The pulse sequence includes a second slice-selective excitation pulse that excites a second slice with the first magnetization and a third slice-selective excitation pulse that excites the first slice with a second magnetization that cancels the first magnetization. The pulse sequence also includes and a fourth slice-selective excitation pulse that excites the second slice with a magnetization that cancels the first magnetization. The first slice and the second slice intersect.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: September 17, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hans Peter Fautz, Rene Gumbrecht