Patents Examined by Tiffany Fetzner
  • Patent number: 9897671
    Abstract: A detuning apparatus for a receive coil for a magnetic resonance device includes a number of coil elements. The coil elements may be selectively connected to a receive channel of a data processing apparatus by way of a switching apparatus. Each of the coil elements includes at least one detuning assembly such as, for example, a PIN diode that may be switched between a detuning state and a receive state by way of a continuous switching signal. A controller is provided to switch the switching apparatus and to generate the switching signals. The detuning apparatus has first diplexers connected upstream of the switching apparatus for injecting switching signals for switching the detuning assembly for coil elements to be detuned dynamically. The detuning apparatus also includes detuning modules for each of the coil elements to switch the detuning assembly to the detuning state if there is no switching signal present.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: February 20, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Bollenbeck, Klaus Porzelt, Wilfried Schnell
  • Patent number: 9897674
    Abstract: In a method and magnetic resonance apparatus to determine a B0 field map describing the local deviation from a nominal Larmor frequency of the magnetic resonance apparatus, magnetic resonance data are acquired at at least two different dephasing times after an excitation, in measurements implemented at two different echo times whose difference forms a dephasing time, and a phase change used to determine the B0 field map is determined from a difference of phases measured at different echo times. The phase changes of different dephasing times are evaluated to at least partially reduce an ambiguity due to Nyquist phase wrapping. The measurements for different dephasing times are implemented at least in part with excitations that generate different excitation fields.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: February 20, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Hans-Peter Fautz
  • Patent number: 9891304
    Abstract: In a method and magnetic resonance apparatus to continuously correct phase errors in a magnetic resonance measurement sequence in which multiple sequentially radiated, multidimensional, spatially-selective radio-frequency excitation pulses are used, multiple calibration gradient echoes are acquired in a calibration acquisition sequence and a correction value for a phase response and a correction value for a phase difference are calculated from the multiple calibration gradient echoes. Furthermore, an additional radio-frequency excitation pulse is radiated takes into account the correction values.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: February 13, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Josef Pfeuffer, Thorsten Speckner
  • Patent number: 9891303
    Abstract: In a method and magnetic resonance system to correct phase errors in multidimensional, spatially selective radio-frequency excitation pulses in a pulse sequence used to operate the system to acquire magnetic resonance data, a multidimensional, spatially selective radio-frequency excitation pulse is radiated and multiple calibration gradient echoes are acquired. A phase correction and a time correction of the multidimensional, spatially selective radio-frequency excitation pulse is then calculated.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: February 13, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Josef Pfeuffer, Thorsten Speckner
  • Patent number: 9885769
    Abstract: A method of assessing a spatial frequency distribution within a sample comprising subjecting the sample to magnetic resonance excitation, receiving an echo signal from the sample while the sample is subjected to a magnetic field gradient, applying an invertible linear transform to the echo signal, identifying a region of interest in the transformed echo signal and deriving a corresponding window function, applying the window function (in the signal or transform domain) to the echo signal to remove echo signal coming from regions of the sample outside of the region of interest, and analyzing the one dimensional spatial frequency content in the windowed echo signal in order to access a one dimensional spatial frequency distribution within the region of interest within the sample without creating an image.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: February 6, 2018
    Assignee: Osteotronix Medical PTE Limited
    Inventors: David R. Chase, Timothy W. James, Lance W. Farr
  • Patent number: 9880242
    Abstract: Systems, methods and devices are configured for integrated parallel reception, excitation, and shimming (iPRES) with RF coil elements with split DC loops. Parallel transmit/receive (which can include B1 shimming and/or parallel imaging capabilities) and B0 shimming employ the same set of localized coils or transverse electromagnetic (TEM) coil elements, with each coil or TEM element working in both an RF mode (for transmit/receive and B1 shimming) and a direct current (DC) mode (for B0 shimming) simultaneously. Both an RF and a DC current (in split DC loops) can flow in the same coil element simultaneously but independently with no electromagnetic interference between the two modes.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: January 30, 2018
    Assignee: Duke University
    Inventors: Dean Darnell, Trong-Kha Truong, Allen W. Song
  • Patent number: 9874616
    Abstract: Systems, methods and devices are configured for integrated parallel reception, excitation, and shimming (iPRES). Parallel transmit/receive (which can include B?1#191 shimming and/or parallel imaging capabilities) and B1 shimming employ the same set of localized coils or transverse electromagnetic (TEM) coil elements, with each coil or TEM element working in both an RF mode (for transmit/receive and B1 shimming) and a direct current (DC) mode (for B0 shimming) simultaneously. Both an RF and a DC current can flow in the same coil simultaneously but independently with no electromagnetic interference between the two modes. This invention is not only applicable when the same coil array is used for parallel transmit, receive and shim, but also when two separate coil arrays are used. In that case, the B0 shimming capability can be integrated into one of the coil arrays (i.e.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: January 23, 2018
    Assignee: Duke University
    Inventors: Hui Han, Trong-Kha Truong, Allen W. Song
  • Patent number: 9869739
    Abstract: Apparatus, methods, and other embodiments associated with heteronuclear nuclear magnetic resonance fingerprinting (NMRfp) are described. One example apparatus includes individually controllable radio frequency transmission coils configured to apply varying NMRfp RF excitations to a sample. The NMR apparatus may apply excitations in parallel. The excitations cause different nuclei to produce different signal evolutions. Different pairs of nuclei may produce different signal evolutions depending on quantum correlations between the types of nuclei.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: January 16, 2018
    Assignee: Case Wetern Reserve University
    Inventor: Mark Griswold
  • Patent number: 9869733
    Abstract: Methods and apparatuses for magnetic resonance imaging (MRI) and/or magnetic resonance spectroscopy comprising a superconducting main magnet operable to generate a uniform magnetic field in an examination region, at least one superconducting gradient field coil operable to apply a respective at least one magnetic field gradient within the examination region, and at least one RF coil that is operable to transmit and receive radio frequency signals to and from the examination region, and that is configured for cooling and comprises at least one of (i) a non-superconducting material that when cooled to a temperature below room temperature has a conductivity higher than that of copper at that temperature and (ii) a superconducting material. The main magnet, the gradient coils, and each of the at least one RF coil of a given system may each be implemented as high temperature superconductor materials.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 16, 2018
    Assignee: Time Medical Holdings Company Limited
    Inventors: Qiyuan Ma, Erzhen Gao
  • Patent number: 9864024
    Abstract: A magnetic resonance coil arrangement for a magnetic resonance device includes at least two coil elements that may be read and/or controlled via an amplifier, and a matching circuit for power and/or noise matching between the at least two coil elements and the amplifier. Components of the matching circuit are dimensioned for wideband matching to a frequency band. The frequency band is limited by outermost relevant coupling modes that are displaced from the resonant frequency. The coupling modes occur due to the interaction of a coil element with at least one adjacent coil element.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: January 9, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventor: Markus Vester
  • Patent number: 9864025
    Abstract: MRI systems with a new concept and hardware modality configured for parallel transmit, receive, and shim to address B0 and B1 inhomogeneity, both of which increase with field strength. This invention benefits from a number of advantages over existing technologies: it can save valuable space within the MRI magnet bore, largely reduce the manufacturing cost of MRI scanners, and avoid the electromagnetic interference issue associated with existing technologies.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: January 9, 2018
    Assignee: Duke University
    Inventors: Hui Han, Trong-Kha Truong, Allen W. Song
  • Patent number: 9857444
    Abstract: Disclosed herein is a magnetic resonance imaging apparatus which includes a connector. A magnetic resonance imaging apparatus includes a static coil module configured to form a static field in a bore, a gradient coil module which includes at least one primary coil configured to form a gradient field in the static field and at least one shield coil configured to cancel an eddy current formed in the static coil module, and a connector which includes a base made of an insulating material and a plurality of conductors which are coupled to the base and which are configured to connect the at least one primary coil and the at least one shield coil.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: January 2, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jun Suk Kwak, Atul Minhas, Ku Cheol Ahn
  • Patent number: 9829553
    Abstract: In a method and a magnetic resonance (MR) system for functional MR imaging of a predetermined volume segment of THE brain of a living examination subject, an RF excitation pulse is radiated into the subject and at least one magnetic field gradient is activated, and MR data of the predetermined volume segment is acquired beginning at a predetermined echo time after the RF excitation pulse. The echo time is in a time period of 10 ?s to 1000 ?s.
    Type: Grant
    Filed: April 5, 2013
    Date of Patent: November 28, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: David Grodzki, Bjoern Heismann, Jeanette Lenger, Sebastian Schmidt
  • Patent number: 9829548
    Abstract: In a magnetic resonance method and apparatus to determine a subject-specific B1 distribution of an examination subject in a measurement volume in the magnetic resonance apparatus, a first measurement data set of the examination subject is acquired using a first pulse sequence, a second measurement data set of the examination subject is acquired using a second pulse sequence, and a third measurement data set of the examination subject is acquired using a third pulse sequence. A first phase is determined from the first measurement data set, a second phase from the second measurement data set and a third phase from the third measurement data set. A relevant phase shift is calculated from the first phase, the second phase and the third phase, and the B1 distribution are determined from the calculated relevant phase shift.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: November 28, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Michael Koehler, Thorsten Speckner
  • Patent number: 9817089
    Abstract: A selection unit for a magnetic resonance imaging system may be provided. The selection unit electrically connects a first number of electrical terminals to a second number of communication entities. The selection unit is arranged in and/or on a mobile object-support element for moving an examination object which is to be depicted by the magnetic resonance imaging system into a recording position.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: November 14, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Stephan Biber, Jan Bollenbeck, Ralph Oppelt, Georg Rauh, Wilfried Schnell, Markus Vester
  • Patent number: 9784805
    Abstract: The invention relates to a nuclear magnetic resonance imaging radio frequency-receiver (112; 216; 308; 404), the receiver (112; 216; 308; 404) being adapted to receive analog signals from at least one radio frequency receiver coil unit (106; 200; 202; 300; 400; 402), the radio frequency receiver (112; 216; 308; 404) comprising: an analog-digital converter (118; 226) to convert the analog pre-amplified magnetic resonance signal into a digital signal, means (120; 230) for digital down converting the digital signal and a first communication interface (130; 252) adapted for transmitting the down converted digital signal via a communication link (e.g. wireless, optical or wire-bound).
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: October 10, 2017
    Assignee: Koninklijke Philips N.V.
    Inventors: Marc Paul Saes, Johan Samuel Van Den Brink, Filips Van Liere, Roel Penterman, Ralph Kurt, Emiel Peeters, Dirk Jan Broer, Michel Paul Barbara Van Bruggen, Hans Van Zon, Miha Fuderer
  • Patent number: 9784809
    Abstract: A method is offered which permits NMR measurements of integer spin nuclei to be performed at higher sensitivity than heretofore. In particular, the method enables high-resolution multidimensional correlation NMR measurements on integer spin nucleus S having integer spin S and nucleus I of other spin species. The method starts with applying an RF magnetic field having a frequency that is n times (where n is an integer equal to or greater than 2) the Larmor frequency of the integer spin nucleus S to the spin S. Magnetization transfer is effected between the nucleus I and the integer spin nucleus S.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: October 10, 2017
    Assignee: JEOL Ltd.
    Inventors: Yusuke Nishiyama, Takahiro Nemoto
  • Patent number: 9778333
    Abstract: Systems and methods for reducing acoustic noise in a Magnetic Resonance Imaging (MRI) are provided. One method includes applying a labeling phase of an arterial spin labeling (ASL) pulse sequence to a region of interest, applying a three-dimensional (3D) radial pulse sequence to the region of interest to generate a tag image, applying a control phase of the ASL pulse sequence to the region of interest, and applying the 3D radial pulse sequence to the region of interest to generate a control image.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: October 3, 2017
    Assignee: General Electric Company
    Inventors: Wei Sun, Gaohong G. Wu, Jason Andrew Polzin, Ajit Shankaranarayanan
  • Patent number: 9753113
    Abstract: In a method and magnetic resonance (MR) apparatus to image a partial region of an examination subject by means of a multislice measurement, which partial region includes at least two measurement slices, and is located at least in part at the edge of a field of view of the magnetic resonance apparatus, for each voxel to be optimized that is located at the edge of the field of view, a gradient field is configured for each measurement slice of the partial region that is to be measured and is used to acquire magnetic resonance data in the multislice measurement. The gradient field is configured so as to cause a nonlinearity of the gradient field and a B0 field inhomogeneity to cancel at each of the aforementioned voxel to be optimized at the partial region at the edge of the field of view. An image of the partial region of the examination subject is determined from the magnetic resonance data acquired in this manner.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: September 5, 2017
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jan Ole Blumhagen, Matthias Fenchel, Ralf Ladebeck
  • Patent number: 9733329
    Abstract: A system and method for determining a magnetic field map when using a magnetic resonance imaging (MRI) system to acquire images from a region of interest (ROI) of a subject. The method includes selecting a pulse sequence to elicit a plurality of echoes from the subject as medical imaging data from the subject. The method also includes optimizing an echo time for a dynamic range of interest during the pulse sequence (SBmax), a minimum signal-to-noise ratio (SNR0) in the medical imaging data, and minimum T2* value in the ROI. The method further includes generating a magnetic field map estimation using the optimized echo times.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: August 15, 2017
    Assignees: The General Hospital Corporation, The Arizona Board of Regents on Behalf of The University of Arizona
    Inventors: Joseph C. Dagher, Ali Bilgin