Patents Examined by Tina Wong
  • Patent number: 10197753
    Abstract: A connector joins the core of at least one optical fiber to the core of another fiber in a manner that is functional and leaktight against the external media, including: a cylindrical body, whose inner portion includes an insert provided with longitudinal through-holes or through-conduits; at least one optical linkage device including a cylindrical ferrule, generally made of ceramic, pierced for the passage of the core of the fiber, and a ferrule holder joined to the end of the associated fiber and providing the mechanical linkage between the ferrule and the insert; and an O-ring seal provided between the ferrule holder and the receiving conduit of the insert. The body of the connector and the insert form a monobloc assembly, either realized as a single piece or realized with the aid of two complementary pieces, fixed to each other in a totally leaktight or hermetic fashion.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: February 5, 2019
    Assignee: ZODIAC AEROSAFETY SYSTEMS
    Inventor: Yannick Pelletier
  • Patent number: 10162123
    Abstract: An optical connector includes a first attachment area (110) for receiving and permanently attaching to an optical waveguide (115). A light coupling unit (120) is disposed and configured to move translationally and not rotationally within the housing of the connector. The light coupling unit includes a second attachment area (121) for receiving and permanently attaching to an optical waveguide received and permanently attached at the first attachment area. The light coupling unit also includes light redirecting surface (122). The light redirecting surface is configured such that when an optical waveguide is received and permanently attached at the first and second attachment areas, the light redirecting surface receives and redirects light from the optical waveguide. The optical waveguide limits, but does not prevent, a movement of the light coupling unit within the housing.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: December 25, 2018
    Assignee: 3M Innovative Properties Company
    Inventors: Terry L. Smith, Barry S. Carpenter, Takayuki Hayauchi
  • Patent number: 10139570
    Abstract: An adapter structure for use with a telecommunications module that is configured to be slidably inserted into a first type of telecommunications chassis comprises a body configured to be mounted to the telecommunications module. The body of the adapter structure is configured for mounting the telecommunications module to a second type of telecommunications chassis that is different than the first type of telecommunications chassis, wherein the telecommunications module is not configured to be mounted to the second type of telecommunications chassis without the adapter structure. The adapter structure includes at least one fiber optic connector protruding outwardly from the body for receiving a fiber optic signal to be relayed to fiber optic equipment of the telecommunications module.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: November 27, 2018
    Assignee: CommScope Technologies LLC
    Inventor: Yuanzhe Zhang
  • Patent number: 10133097
    Abstract: An example optical polarization controller can include a substantially planar substrate and a waveguide unit cell formed on the substantially planar substrate. The waveguide unit cell can include a first out-of-plane waveguide portion and a second out-of-plane waveguide portion coupled to the first out-of-plane waveguide portion. Each of the first and second out-of-plane waveguide portions can respectively include a core material layer arranged between a first optical cladding layer having a first stress-response property and a second optical cladding layer having a second stress-response property. The first and second stress-response properties can be different such that each of the first and second out-of-plane waveguide portions is deflected by a deflection angle.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: November 20, 2018
    Assignee: OHIO STATE INNOVATION FOUNDATION
    Inventors: Ronald M. Reano, Peng Sun, Qiang Xu
  • Patent number: 10133147
    Abstract: The present invention provides devices, systems, and methods for producing bi-photons and/or entangled photons without the need for complex alignment or source design by the user. The invention provides a scalable source of high-brightness, high-visibility, bi-photons and entangled photons that can be configured for a number of applications.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: November 20, 2018
    Assignee: QUBITEKK, INC.
    Inventors: Dennis Duncan Earl, Clifford Allen Bishop
  • Patent number: 10126492
    Abstract: The object of the present invention is to provide a plastic image fiber having a small optical transmission loss. The plastic image fiber comprises N (where N is an integer equal to or greater than 2) number of cores which are disposed within a cladding. The each of the cores has an index of reflection that continuously changes at a peripheral part of the core. The index of reflection at the peripheral part on a center side of the core is greater than an index of reflection at the peripheral part on a cladding side.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: November 13, 2018
    Assignee: KURARAY CO., LTD.
    Inventors: Osamu Shinji, Tatsuya Ueda, Katashi Saito
  • Patent number: 10128954
    Abstract: A transceiver comprising a chip, a semiconductor laser, and one or more photodetectors, the chip comprising optical and optoelectronic devices and electronic circuitry, where the transceiver is operable to: communicate, utilizing the semiconductor laser, an optical source signal into the chip, generate first optical signals in the chip based on the optical source signal, transmit the first optical signals from the chip via a light pipe with a sloped reflective surface coupled to the chip, and receive second optical signals from the light pipe and converting the second optical signals to electrical signals via the photodetectors. The optical signals may be communicated out of and in to a top surface of the chip. The one or more photodetectors may be integrated in the chip. The optoelectronic devices may include the one or more photodetectors integrated in the chip. The light pipe may be a planar lightwave circuit (PLC).
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: November 13, 2018
    Assignee: Luxtera, Inc.
    Inventors: Peter DeDobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn
  • Patent number: 10126511
    Abstract: A fiber coupling device comprising a mounting substrate, at least one optoelectronic and/or photonic chip and at least one first fiber coupling element for coupling an optical fiber to the fiber coupling device is disclosed. The optoelectronic and/or photonic chip has a main surface and comprises an optoelectronic and/or photonic active element couplable to a fiber end-piece of a respective optical fiber. The fiber coupling device further comprises at least one second fiber coupling element which is designed to contact and/or engage with a fiber end-piece of an optical fiber and which is mounted to the main surface of the at least one optoelectronic and/or photonic chip in a position aligned relative to the active element.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: November 13, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Sören Böldicke, Martin Spreemann, Eric Stephan ten Have, Gary Richard Trott
  • Patent number: 10120135
    Abstract: An apparatus comprises a substrate comprising a silicon dioxide (SiO2) material disposed on top of the substrate, a silicon waveguide comprising a first adiabatic tapering and enclosed in the silicon dioxide material, and a low-index waveguide disposed on top of the substrate and adjacent to the first adiabatic tapering. A mode converter fabrication method comprises obtaining a mode converter comprising a substrate, a silicon waveguide disposed on the substrate and comprising a sidewall and a first adiabatic tapering, and a hard mask disposed on the silicon waveguide and comprising a silicon dioxide layer, wherein the hard mask does not cover the sidewall, and oxidizing the silicon waveguide and the hard mask, wherein oxidizing the silicon waveguide and the hard mask encloses the silicon waveguide within the silicon dioxide layer.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: November 6, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Li Yang, Huapu Pan, Qianfan Xu, Dawei Zheng, Xiao Shen
  • Patent number: 10107975
    Abstract: A method for manufacturing an optoelectronic assembly includes attaching an optical die, a first lens, a second lens, and an optical fiber to a sub-mount. The sub-mount includes a plurality of passive alignment features which aid in the passive alignment of the optical die, the first lens, and the optical fiber for attachment. The second lens is actively aligned between the first lens and the optical fiber, based on a coupling efficiency with which an optical signal emitted by the optical die is coupled into the optical fiber through the first and second lenses. The active alignment of the second lens includes calibration of at least one of a position and a degree of tilt of the second lens.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: October 23, 2018
    Assignee: Denselight Semiconductors Pte. Ltd.
    Inventors: Yee Loy Lam, Long Cheng Koh, Kian Hin Victor Teo
  • Patent number: 10107957
    Abstract: According to some embodiments, a multimode optical fiber comprises a graded index glass core with refractive index ?1, a maximum refractive index delta ?1MAX, and a core radius between 10 and 40 microns; and cladding region surrounding the core comprising refractive index ?4, wherein the fiber exhibits an overfilled bandwidth exhibits an overfilled bandwidth of at least 3 GHz-km at a wavelength of 850 nm and an overfilled bandwidth of at least 1.2 GHz-km at one or more wavelengths between 980 and 1060 nm.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: October 23, 2018
    Assignee: Corning Incorporated
    Inventors: Scott Robertson Bickham, Xin Chen, Ming-Jun Li
  • Patent number: 10109744
    Abstract: It is an object of the present invention to connect a wiring, an electrode, or the like formed with two incompatible films (an ITO film and an aluminum film) without increasing the cross-sectional area of the wiring and to achieve lower power consumption even when the screen size becomes larger. The present invention provides a two-layer structure including an upper layer and a lower layer having a larger width than the upper layer. A first conductive layer is formed with Ti or Mo, and a second conductive layer is formed with aluminum (pure aluminum) having low electric resistance over the first conductive layer. A part of the lower layer projected from the end section of the upper layer is bonded with ITO.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: October 23, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshinari Higaki, Masayuki Sakakura, Shunpei Yamazaki
  • Patent number: 10101574
    Abstract: An optical coupler for mounting at a distal end of an optical imaging device includes a visualization section and an attachment section. At least one surface of the visualization section has a roughness that does not interfere with a video capture system of an optical imaging device.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 16, 2018
    Inventor: Scott Miller
  • Patent number: 10088734
    Abstract: In a waveguide-type optical element, broaderband operation becomes possible. The waveguide-type optical element includes optical waveguides (110 and 112) formed on a substrate (100) having an electro-optic effect and a control electrode for controlling an optical wave that is transmitted through the optical waveguide, the control electrode comprises a central electrode (104) and ground electrodes (106 and 108), the central electrode being formed along the optical waveguide, and the ground electrodes being formed so as to put the central electrode therebetween in a surface direction of the substrate at a predetermined distance from the central electrode, and the central electrode or the ground electrodes have multiple pairs of facets, each comprising two facets facing each other, along a transmission direction of high-frequency signals that are transmitted through the central electrode and the ground electrodes.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: October 2, 2018
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Katsutoshi Kondou, Junichiro Ichikawa, Toshio Kataoka
  • Patent number: 10082685
    Abstract: An optical system can automatically lock an adjustable spectral filter to a first wavelength of an incoming light signal, and can automatically filter an additional incoming light signal at the first wavelength. A tunable filter can have a filtering spectrum with an adjustable peak wavelength and increasing attenuation at wavelengths away from the adjustable peak wavelength. The tunable filter can receive first input light, having a first wavelength, and can spectrally filter the first input light to form first output light. A detector can detect at least a fraction of the first output light. Circuitry coupled to the detector and the tunable filter can tune the tunable filter to maximize a signal from the detector and thereby adjust the peak wavelength to match the first wavelength. The tunable filter further can receive second input light and spectrally filter the second input light at the first wavelength.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: September 25, 2018
    Assignee: Aurrion, Inc.
    Inventor: Robert Silvio Guzzon
  • Patent number: 10073223
    Abstract: A clip connects two ferrules together, without a housing, to form a fiber optic connection. The clip has proximal and distal ends which define, and the clip has arms extending along the longitudinal axis to hold a cable-side ferrule in connection with fixed ferrule connected to a photonic module or die. The arms form an opening through which the cable-side ferrule is passed for connecting to the fixed ferrule. The arms have resilient bends forming a spring that can be resiliently extended along the longitudinal axis. The arms have a contact area at their ends which grasp the end of the cable-sided ferrule. The arms resiliently retract to compress the cable-sided ferrule towards the fixed ferrule with a predetermined force. The clip is positioned with respect to the circuit board using a pick and place system. The clip is not taller than either ferrule portion, enabling a limited vertical clearance.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: September 11, 2018
    Assignee: International Business Machines Corporation
    Inventors: Tymon Barwicz, Jerome Bougie, Darrell Childers, Paul Francis Fortier, Alexander Janta-Polczynski, Stephan L. Martel
  • Patent number: 10073234
    Abstract: A system (90) for routing a stack of fiber optic ribbons (100) includes a fiber optic cable (50) and a fiber guide tube (300). The fiber optic cable (50) includes a jacket (54) and a ribbon stack (110). The jacket (54) extends from a first end (56) to a second end (58). The ribbon stack (110) extends from a first end (112) to a second end (114). A jacketed portion (60) of the ribbon stack (110) is surrounded by the jacket (54) from the first end (56) of the jacket (54) to the second end (58) of the jacket (54). The fiber guide tube (300) extends from a first end (302) to a second end (304) along a central longitudinal axis (A1). The fiber guide tube (300) is positioned between the first end (56) of the jacket (54) and the first end (112) of the ribbon stack (110). The fiber guide tube (300) includes a round exterior (308) and an interior (310) with a rectangular cross-section (318).
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: September 11, 2018
    Assignee: CommScope Technologies LLC
    Inventors: Dennis Ray Wells, Kamlesh G. Patel
  • Patent number: 10074901
    Abstract: A beam steering optical phased array (OPA) may include an optical signal distributor including a plurality of output terminals configured to divide and output input optical signals and phase shifters arranged at the plurality of output terminals and configured to receive the divided optical signals and shift phases thereof to generate phase-shifted optical signals. The beam steering OPA may include antennas configured to receive the phase-shifted optical signals and an optical signal interferometer. The optical signal interferometer may include first input waveguide regions connected to a limited selection of the antennas and extending in a first direction, a multi-mode waveguide region connected to the first input waveguide regions, and a first output waveguide region connected to the multi-mode waveguide region and extending in the first direction. The beam OPA may enable errors due to process dispersion to be effectively corrected, and thus, the beam steering OPA may have enhanced reliability.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: September 11, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-il Byun, Dong-jae Shin
  • Patent number: 10067302
    Abstract: Aspects and techniques of the present disclosure relate generally to fiber wall jacks including connector covers for protecting mating fiber optic connectors or adapters that prevent light emissions from the fiber-optics of the connectors when the adapter is open (i.e., when no mating connector is inserted). The connector covers providing protection of the open end from environmental contamination.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: September 4, 2018
    Assignee: CommScope Technologies LLC
    Inventor: Barry Wayne Allen
  • Patent number: 10067403
    Abstract: Provided is an optical modulator including: a relay substrate; a first transmission line that is provided on a flat surface of the relay substrate, and transmits, along the flat surface of the relay substrate, an electrical signal that has been input from an outer side; a second transmission line that is provided in the relay substrate, and transmits the electrical signal in a direction that is not included in the flat surface; a modulation unit that modulates an optical signal by using the electrical signal that is transmitted by the first transmission line and the second transmission line; and a shield that shields a radiation component of the electrical signal that is radiated from a contact of the first transmission line and the second transmission line.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 4, 2018
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Toshio Kataoka, Junichiro Ichikawa