Patents Examined by Tod T. Van Roy
  • Patent number: 11482828
    Abstract: A passively, Q-switched laser operating at an eye safe wavelength of between 1.2 and 1.4 microns is described. The laser may operate at a lasing wavelength of 1.34 microns and use a gain element of Nd:YVO4 and a saturable absorber element of V:YAG. The position of the resonator axial mode spectrum relative to a gain peak of the gain element is controlled to yield desired characteristics in the laser output.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: October 25, 2022
    Inventors: Thomas James Kane, John Lawrence Nightingale
  • Patent number: 11482832
    Abstract: A multi-wavelength laser module including a base plate, a plurality of radiation sources mounted on the base plate, at least one telescope including a first lens and a second lens wherein the second lens is arranged at a distance from the first lens along a radiation beam path, thereby creating a telescopic effect. A beam angle correction plate is arranged between the first lens and the second lens in the radiation beam path, the beam angle correction plate being angled in relation to the radiation beam path so as to parallel shift the radiation beam inside the telescope and thereby adjust the pointing direction of the radiation beam after passage of the telescope. Further, a method for assembling a multi-wavelength laser system provided with telescopes with such beam angle correction plate.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: October 25, 2022
    Assignee: COBOLT AB
    Inventors: Gunnar Elgcrona, Magnus Rådmark, Håkan Karlsson
  • Patent number: 11482839
    Abstract: A vertical cavity surface emitting laser (VCSEL) array may include a plurality of VCSELs. A size of an emission area of a first VCSEL, of the plurality of VCSELs, may be different from a size of an emission area of a second VCSEL of the plurality of VCSELs. The first VCSEL may be located closer to a center of the VCSEL array than the second VCSEL. A difference between the size of the emission area of the first VCSEL and the size of the emission area of the second VCSEL may be associated with reducing a difference in operating temperature between the first VCSEL and the second VCSEL, or reducing a difference in optical power output between the first VCSEL and the second VCSEL.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: October 25, 2022
    Assignee: Lumentum Operations LLC
    Inventors: Ajit Vijay Barve, Eric R. Hegblom
  • Patent number: 11482836
    Abstract: A driver circuit includes a fly capacitor with a first end and a second end. The driver circuit includes a laser diode having an anode and a cathode. The driver circuit is configured to operate in first and second operating states. The anode is coupled to the first end of the fly capacitor. In the first operating state, the cathode is coupled to a first voltage supply node, the first end of the fly capacitor is coupled to a second voltage supply node, and the second end of the fly capacitor is coupled to a first reference terminal. In the second operating state, the cathode is coupled to a second reference terminal and decoupled from the first voltage supply node, the first end of the fly capacitor is decoupled from the second voltage supply node, and the second end of the fly capacitor is coupled to a third reference terminal.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: October 25, 2022
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Samuel Rigault, Nicolas Moeneclaey, Xavier Branca
  • Patent number: 11462888
    Abstract: An optical device may include an emitter array including a plurality of emitter groups. Each emitter group may be independently addressable from other emitter groups, of the plurality of emitter groups, for independently lasing. Emitters of the plurality of emitter groups may be interspersed within the emitter array such that a minimum emitter-to-emitter distance within the emitter array is less than a minimum emitter-to-emitter distance within any of the emitter groups.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 4, 2022
    Assignee: Lumentum Operations LLC
    Inventor: Eric R. Hegblom
  • Patent number: 11456575
    Abstract: A vertical-cavity surface-emitting laser (VCSEL) may include a substrate and a set of epitaxial layers on the substrate. The set of epitaxial layers may include a first mirror and a second mirror, an active region between the first mirror and the second mirror, and an oxidation layer to provide optical and electrical confinement in the VCSEL. The oxidation layer may be near the first mirror. The set of epitaxial layers may include an oxide lens to control a characteristic of an output beam emitted by the VCSEL. The oxide lens may be separate from the oxidation layer, and may be a lens that is separate from the first mirror and from the second mirror.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: September 27, 2022
    Assignee: Lumentum Operations LLC
    Inventors: Albert Yuen, Eric R. Hegblom
  • Patent number: 11444426
    Abstract: In methods and devices for generating a laser pulse of an excitation laser that is actuated by a driver in response to a triggering time of a trigger signal, the driver actuation signal is generated taking into account the time interval between the triggering time and a preceding triggering time.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: September 13, 2022
    Assignee: TRUMPF LASER GMBH
    Inventors: Rainer Flaig, Oliver Rapp, Aleksander Budnicki, Florian Jansen, Daniel Glunk
  • Patent number: 11431146
    Abstract: A chip on submodule includes a submount having a top surface, bottom surface and side surfaces. A positive electrode plate is affixed to a first portion of one side surface, the top surface and a first portion of the bottom surface. The positive electrode plated first portion of the one side surface and the top surface are interconnected. A connector electrically connects the positive electrode plated top surface to the first portion of the bottom surface. A negative electrode plate is affixed to a second portion of the one side surface and a second portion of the bottom surface. The negative electrode plated second portion of the one side surface and second portion of the bottom surface are interconnected. A laser diode is affixed to the positive electrode plated first portion of the one side surface and connected to the negative electrode plated second portion of the one side surface.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: August 30, 2022
    Assignee: Jabil Inc.
    Inventors: Lorito E. Victoria, Lars Runge
  • Patent number: 11417999
    Abstract: An optical assembly provides dispersion control, modelocking, spectral filtering, and/or the like in a laser cavity. For example, the optical assembly may comprise a diffraction grating pair arranged to temporally and spatially disperse a beam on a forward pass through the optical assembly, a reflective device at an end of the optical assembly, and a focusing optic arranged to create a beam waist at the reflective device. The beam waist created at the reflective device may cause the beam to be inverted on a reverse pass through the optical assembly, and a temporal dispersion and a spatial dispersion of the beam may be doubled on the reverse pass through the optical assembly to form a temporally and spatially dispersed output from the optical assembly.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 16, 2022
    Assignee: Lumentum Operations LLC
    Inventors: Simonette Pierrot, Martin H. Muendel
  • Patent number: 11362487
    Abstract: A laser emitter is provided, including a substrate and a dielectric mask layer located proximate to and above the substrate in a thickness direction. The dielectric mask layer may have a plurality of trenches formed therein. The plurality of trenches may have a plurality of different respective widths. The laser emitter may further include a respective nanowire located within each trench of the plurality of trenches. Each nanowire may include a first semiconductor layer located above the substrate in the thickness direction. Each nanowire may further include a quantum well layer located proximate to and above the first semiconductor layer in the thickness direction. Each nanowire may further include a second semiconductor layer located proximate to and above the quantum well layer in the thickness direction.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: June 14, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Sergei V. Gronin, Geoffrey Charles Gardner, Raymond Leonard Kallaher
  • Patent number: 11362486
    Abstract: A vertical-cavity surface-emitting laser (VCSEL) is provided. The VCSEL includes a mesa structure disposed on a substrate. The mesa structure includes a first reflector, a second reflector, and an active cavity material structure disposed between the first and second reflectors. The second reflector has an opening extending from a second surface of the second reflector into the second reflector by a predetermined depth. Etching into the second reflector to the predetermined depth reduces the photon lifetime and the threshold gain of the VCSEL, while increasing the modulation bandwidth and maintaining the high reflectivity of the second reflector. Thus, etching the second reflector to the predetermined depth provides an improvement in overshoot control, broader modulation bandwidth, and faster pulsing of the VCSEL such that the VCSEL may provide a high speed, high bandwidth signal with controlled overshoot.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: June 14, 2022
    Assignee: Mellanox Technologies, Ltd.
    Inventors: Itshak Kalifa, Elad Mentovich
  • Patent number: 11355898
    Abstract: A laser diode array (102) comprising a plurality of laser diodes (201-210) and a channel (212) proximate to each of the laser diodes (201-210), the channel (212) configured to receive and provide a passage for a flow of a fluid coolant; wherein the laser diodes (201-210) are configured to emit electromagnetic radiation having the same centre wavelength at different respective junction temperatures. A coolant supply system (104) coupled to the laser diode array (102) may cause coolant to flow through the channel (212). A flow rate of the coolant through the channel (212) may be controlled based on temperature measurements of the coolant prior to entering, within, and/or after exiting the laser diode array (102).
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: June 7, 2022
    Assignee: BAE Systems plc
    Inventor: Graham Andrew Holland
  • Patent number: 11349277
    Abstract: Systems, methods, and devices are described for in-situ testing of vertical-cavity surface-emitting lasers (VCSELs), VCSEL arrays or laser diodes (each a laser). Testing may comprise bias voltage measurements of one or more lasers. Embodiments may comprise one of a laser, a driver circuit providing a bipolar drive to the laser, and a sensing circuit to measure and/or monitor damage or degradation of the laser. The bipolar drive may comprise a pulsed forward bias output configured to produce a light output during an on-time of the laser, and a pulsed reverse bias output during an off-time of the pulsed forward bias output. The pulsed outputs may comprise a variable, chirped frequency. One or more of a reverse leakage current, and a junction temperature may be measured to monitor a state of health of the laser.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: May 31, 2022
    Assignee: Lumentum Operations LLC
    Inventor: Kevin M. Kupcho
  • Patent number: 11335829
    Abstract: Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: May 17, 2022
    Assignee: Ostendo Technologies, Inc.
    Inventors: Hussein S. El-Ghoroury, Mikhail V. Kisin, Yea-Chuan Milton Yeh, Chih-Li Chuang, Jyh-Chia Chen
  • Patent number: 11329191
    Abstract: Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: May 10, 2022
    Assignee: Ostendo Technologies, inc.
    Inventors: Hussein S. El-Ghoroury, Mikhail V. Kisin, Yea-Chuan Milton Yeh, Chih-Li Chuang, Jyh-Chia Chen
  • Patent number: 11329452
    Abstract: A tunable laser device based on silicon photonics includes a substrate configured with a patterned region comprising one or more vertical stoppers, an edge stopper facing a first direction, a first alignment feature structure formed in the patterned region along the first direction, and a bond pad disposed between the vertical stoppers. Additionally, the tunable laser includes an integrated coupler built in the substrate located at the edge stopper and a laser diode chip including a gain region covered by a P-type electrode and a second alignment feature structure formed beyond the P-type electrode. The laser diode chip is flipped to rest against the one or more vertical stoppers with the P-type electrode attached to the bond pad and the gain region coupled to the integrated coupler. Moreover, the tunable laser includes a tuning filter fabricated in the substrate and coupled via a wire waveguide to the integrated coupler.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: May 10, 2022
    Assignee: Marvell Asia Pte Ltd.
    Inventors: Radhakrishnan L. Nagarajan, Masaki Kato, Nourhan Eid, Kenneth Ling Wong
  • Patent number: 11329451
    Abstract: A device for generating a laser pulse. The device includes a laser diode that includes a first diode and a second diode, so that the laser diode includes a first anode, a second anode, and a cathode. The device further includes a first voltage potential that is electrically connected to the second anode, a second voltage potential that has a lower value than the first voltage potential, a first switch that is electrically connected to the first anode and to the second voltage potential, and a second switch that is electrically connected to the cathode and to the second voltage potential. A resistor is electrically connected to the first anode and to the second anode.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: May 10, 2022
    Assignee: Robert Bosch GmbH
    Inventor: Axel Pannwitz
  • Patent number: 11322908
    Abstract: A nitride light emitter includes: a nitride semiconductor light-emitting element including an AlxGa1-xN substrate (0?x?1) and a multilayer structure above the AlxGa1-xN substrate; and a submount substrate on which the nitride semiconductor light-emitting element is mounted. The multilayer structure includes a first clad layer of a first conductivity type, a first light guide layer, a quantum-well active layer, a second light guide layer, and a second clad layer of a second conductivity type which are stacked sequentially from the AlxGa1-xN substrate. The multilayer structure and submount substrate are opposed to each other. The submount substrate comprises diamond. The nitride semiconductor light-emitting element has a concave warp on a surface closer to the AlxGa1-xN substrate.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: May 3, 2022
    Assignee: NUVOTON TECHNOLOGY CORPORATION JAPAN
    Inventors: Toru Takayama, Tohru Nishikawa, Tougo Nakatani, Katsuya Samonji, Takashi Kano, Shinji Ueda
  • Patent number: 11322912
    Abstract: A semiconductor laser array includes: a plurality of semiconductor lasers configured to oscillate in a single mode at oscillation wavelengths different from one another, each semiconductor laser including an active layer including a multi-quantum well structure including a plurality of will layers and a plurality of barrier layers laminated alternately, and an n-side separate confinement heterostructure layer and p-side separate confinement heterostructure layer configured to sandwich the active layer therebetween in a thickness direction, band gap energies of the n-side separate confinement heterostructure layer and the p-side separate confinement heterostructure layer being greater than band gap energies of the barrier layers of the active layer. The active layer is doped with an n-type impurity.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: May 3, 2022
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Akira Itoh, Junji Yoshida, Kazuaki Kiyota
  • Patent number: 11316317
    Abstract: A multi-wavelength laser device equipped with a linear cavity along which a first direction and a second direction opposite to the first direction are defined is disclosed. The apparatus includes, along the first direction, a first optical component, a gain and Raman medium, a sum frequency generation crystal, a first second-harmonic generation crystal and a second optical component. The first optical component allows a pumping light to transmit therethrough and be incident in the first direction. The gain and Raman medium receives the pumping light from the first optical component and generates a first infrared base laser light having a first wavelength and a second infrared base laser light having a second wavelength. The first and second optical components form a laser cavity for oscillation of these two infrared base laser lights. The sum frequency generation crystal receives the first and second infrared base laser lights and generates a first visible laser light having a third wavelength.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: April 26, 2022
    Assignee: Lightmed Corporation
    Inventors: Yung-Fu Chen, Hsing-Chih Liang, Chia-Han Tsou