Patents Examined by Tsz Chiu
  • Patent number: 8766435
    Abstract: An integrated circuit package is provided with a thin-film battery electrically connected to and encapsulated with an integrated circuit die. The battery can be fabricated on a dedicated substrate, on the die pad, or on the integrated circuit die itself.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: July 1, 2014
    Assignee: STMicroelectronics, Inc.
    Inventors: Michael J. Hundt, Haibin Du, Krishnan Kelappan, Frank Sigmund
  • Patent number: 8749025
    Abstract: A semiconductor chip is specified that has a contact layer that is not optimum for many common applications. For example, the contact layer is too thin to tolerate an operating current intended for the semiconductor chip without considerable degradation. Also specified is an optoelectronic component in which the semiconductor chip can be integrated so that the suboptimal quality of the contact layer is compensated for. In the component the semiconductor chip is applied to a carrier body so that the contact layer is arranged on a side of the semiconductor body that is remote from the carrier body. The semiconductor chip and the carrier body are at least partly covered with an electrically isolating layer, and an electrical conductor applied to the isolating layer extends laterally away from the semiconductor body and contacts at least a partial surface of the contact layer. In addition, an advantageous process for producing the component is specified.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: June 10, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Elmar Baur, Walter Wegleiter
  • Patent number: 8729551
    Abstract: A flat panel display includes; a first substrate, a white reflective layer disposed on the first substrate, a pixel electrode disposed on the white reflective, a second substrate disposed facing the first substrate, a common electrode disposed on the second substrate, and an electrooptic layer disposed between the pixel electrode and the common electrode, wherein the white reflective layer includes at least one of TiO2 and BaSO4.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: May 20, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Nam-Seok Roh, Jung-Woo Park, Dae-Jin Park, Yu-Jin Kim, Joo-Han Bae, Tae-Hyung Hwang, Seok-Joon Hong
  • Patent number: 8710548
    Abstract: A semiconductor device includes a first semiconductor layer which is formed above a substrate, a Schottky electrode and an ohmic electrode which are formed on the first semiconductor layer to be spaced from each other and a second semiconductor layer which is formed to cover the first semiconductor layer with the Schottky electrode and the ohmic electrode exposed. The second semiconductor layer has a larger band gap than that of the first semiconductor layer.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: April 29, 2014
    Assignee: Panasonic Corporation
    Inventors: Manabu Yanagihara, Kazushi Nakazawa, Tsuyoshi Tanaka
  • Patent number: 8710675
    Abstract: An integrated circuit package system includes a first integrated circuit die having die pads only adjacent a single edge of the first integrated circuit die, forming first bonding lands adjacent the single edge, connecting the die pads and the first bonding lands, and encapsulating the die pads and a portion of the first bonding lands to form a first package.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: April 29, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Young Cheol Kim, Koo Hong Lee
  • Patent number: 8704314
    Abstract: A mechanical memory transistor includes a substrate having formed thereon a source region and a drain region. An oxide is formed upon a portion of the source region and upon a portion of the drain region. A pull up electrode is positioned above the substrate such that a gap is formed between the pull up electrode and the substrate. A movable gate has a first position and a second position. The movable gate is located in the gap between the pull up electrode and the substrate. The movable gate is in contact with the pull up electrode when the movable gate is in a first position and is in contact with the oxide to form a gate region when the movable gate is in the second position. The movable gate, in conjunction with the source region and the drain region and when the movable gate is in the second position, form a transistor that can be utilized as a non-volatile memory element.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: April 22, 2014
    Assignee: Massachusetts Institute of Technology
    Inventor: Carl O. Bozler
  • Patent number: 8704265
    Abstract: In one embodiment, the light emitting device package includes a package body, electrodes attached to the package body, and at least two light emitting devices electrically connected to the electrodes. Each light emitting device emits light of a different color from the other light emitting devices. A protective layer is formed over the at least two light emitting devices, and a phosphor layer formed over the protective layer. Other embodiments include other structures such a individual phosphor layers on each light emitting device. And, a light apparatus including a package may include a single driver driving the light emitting devices of the package.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: April 22, 2014
    Assignee: LG Electronics Inc.
    Inventors: Bu Wan Seo, Sung Woo Kim, Hoon Hur, Yong Suk Kim
  • Patent number: 8697490
    Abstract: A flip chip interconnection structure is formed by mechanically interlocking joining surfaces of a first and second element. The first element, which may be a bump on an integrated circuit chip, includes a soft, deformable material with a low yield strength and high elongation to failure. The surface of the second element, which may for example be a substrate pad, is provided with asperities into which the first element deforms plastically under pressure to form the mechanical interlock.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: April 15, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Rajendra D. Pendse
  • Patent number: 8692295
    Abstract: A double heterojunction bipolar transistor on a substrate comprises a collector formed of InGaAsP, a base in contact with the collector, an emitter in contact with the base, and electrodes forming separate electrical contacts with each of the collector, base, and emitter, respectively. A device incorporates this transistor and an opto-electronic device optically coupled with the collector of the transistor to interact with light transmitted therethrough.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: April 8, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Rajesh D. Rajavel, Stephen Thomas, III
  • Patent number: 8686428
    Abstract: A device with an external surface, the device including: a substrate including first mono-crystal transistors; a second layer including second mono-crystal transistors, the second mono-crystal transistors overlaying the first mono-crystal transistors; and a plurality of thermal conduction paths from a plurality of the second layer locations to the external surface, wherein at least one of the thermal conduction paths includes an electrically nonconductive contact.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: April 1, 2014
    Assignee: Monolithic 3D Inc.
    Inventors: Deepak Sekar, Zvi Or-Bach, Brian Cronquist
  • Patent number: 8686498
    Abstract: A semiconductor device is provided. The semiconductor device includes a gate on a substrate, a source region at a first side of the gate, a first conductive type body region under the source region, a second conductive type drain region at a second side of the gate, a device isolation region in the substrate between the source region and the drain region and overlapping part of the gate, and a first buried layer extending in a direction from the source region to the drain region, the first buried layer under the body region, overlapping part of the device isolation region, and not overlapping the drain region.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: April 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Mueng-Ryul Lee
  • Patent number: 8680561
    Abstract: A semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a light emitting layer, a first electrode layer, and a second electrode layer. The light emitting layer is between the first semiconductor layer and the second semiconductor layer. The first electrode layer is on a side of the second semiconductor layer opposite to the first semiconductor layer. The first electrode layer includes a metal portion and a plurality of opening portions piercing the metal portion along a direction from the first semiconductor layer toward the second semiconductor layer. The metal portion contacts the second semiconductor layer. An equivalent circular diameter of a configuration of the opening portions as viewed along the direction is not less than 10 nanometers and not more than 5 micrometers.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: March 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Kitagawa, Akira Fujimoto, Koji Asakawa, Eishi Tsutsumi, Takanobu Kamakura, Shinji Nunotani, Masaaki Ogawa
  • Patent number: 8680679
    Abstract: Disclosed is a semiconductor device including: an insulating layer; a source electrode and a drain electrode embedded in the insulating layer; an oxide semiconductor layer in contact and over the insulating layer, the source electrode, and the drain electrode; a gate insulating layer over and covering the oxide semiconductor layer; and a gate electrode over the gate insulating layer, where the upper surfaces of the insulating layer, the source electrode, and the drain electrode exist coplanarly. The upper surface of the insulating layer, which is in contact with the oxide semiconductor layer, has a root-mean-square (RMS) roughness of 1 nm or less, and the difference in height between the upper surface of the insulating layer and the upper surface of the source electrode or the drain electrode is less than 5 nm. This structure contributes to the suppression of defects of the semiconductor device and enables their miniaturization.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: March 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromichi Godo, Ryota Imahayashi, Kiyoshi Kato
  • Patent number: 8674471
    Abstract: A semiconductor device supplying a charging current to a charging-target element includes: a semiconductor layer of a first conductivity type; a first semiconductor region of a second conductivity type formed on a main surface of the semiconductor layer and having a first node coupled to a first electrode of the charging-target element and a second node coupled to a power supply potential node supplied with a power supply voltage; a second semiconductor region of the first conductivity type formed in a surface of the first semiconductor region at a distance from the semiconductor layer and having a third node coupled to the power supply potential node; and a charge carrier drift restriction portion restricting drift of charge carrier from the third node to the semiconductor layer.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: March 18, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Tomohide Terashima
  • Patent number: 8653561
    Abstract: A III-nitride semiconductor electronic device comprises a semiconductor laminate provided on a primary surface of a substrate, a first electrode in contact with the semiconductor laminate, and a second electrode. The semiconductor laminate includes a channel layer and a barrier layer making a junction with the channel layer. The channel layer comprises first III-nitride semiconductor containing aluminum as a Group III constituent element, and the barrier layer comprises second III-nitride semiconductor containing aluminum as a Group III constituent element. The semiconductor laminate including first, second and third regions arranged along the primary surface, and the third region is located between the first region and the second region. The barrier layer includes first to third portions included in the first to third regions, respectively.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: February 18, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shin Hashimoto, Katsushi Akita, Yoshiyuki Yamamoto, Masaaki Kuzuhara, Norimasa Yafune
  • Patent number: 8653596
    Abstract: An integrated circuit includes an SOI substrate with a unitary N+ layer below the BOX, a P region in the N+ layer, an eDRAM with an N+ plate, and logic/SRAM devices above the P region. The P region functions as a back gate of the logic/SRAM devices. An optional intrinsic (undoped) layer can be formed between the P back gate layer and the N+ layer to reduce the junction field and lower the junction leakage between the P back gate and the N+ layer. In another embodiment an N or N+ back gate can be formed in the P region. The N+ back gate functions as a second back gate of the logic/SRAM devices. The N+ plate of the SOI eDRAM, the P back gate, and the N+ back gate can be electrically biased at the same or different voltage potentials. Methods to fabricate the integrated circuits are also disclosed.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Terence B. Hook, Ali Khakifirooz, Pranita Kulkarni
  • Patent number: 8643136
    Abstract: The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device includes: a first conductive type substrate in which isolation regions are formed for defining a device region; a gate formed on the first conductive type substrate; a source and a drain formed in the device region and located at both sides of the gate respectively, and doped with second conductive type impurities; a second conductive type well, which is formed in the first conductive type substrate, and surrounds the drain from top view; and a first deep trench isolation structure, which is formed in the first conductive type substrate, and is located in the second conductive type well between the source and the drain from top view, wherein the depth of the first deep trench isolation structure is deeper than the second conductive type well from the cross-sectional view.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: February 4, 2014
    Assignee: Richtek Technology Corporation
    Inventors: Tsung-Yi Huang, Kuo-Hsuan Lo
  • Patent number: 8633543
    Abstract: An electro-static discharge protection circuit includes: a PNPN junction, a P-type side of the PNPN junction being coupled to a terminal, an N-type side of the PNPN junction being coupled to ground; and a P-type metal oxide semiconductor transistor, a source and a gate of the P-type metal oxide semiconductor transistor being coupled to an N-type side of a PN junction whose P-type side coupled to the ground, and a drain of the P-type metal oxide semiconductor transistor being coupled to the terminal.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: January 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kazutoshi Ohta, Kenji Hashimoto
  • Patent number: 8633513
    Abstract: Structures and method for reducing junction leakage in semiconductor devices. The die can include a substrate having a cut edge, a first region of first conductivity type within the substrate and a region of a second conductivity type within the substrate and in contact with the first region forming a junction. At least one semiconductor device is on the substrate. A second region of the first conductivity type is between the plurality of semiconductor devices and the cut edge within the region of the second conductivity type, and extending to the junction. The second region of the first conductivity type can isolate the at least one semiconductor device from leakage pathways created by saw damage at the junction along the cut edge.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: January 21, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Daniel Doyle, Jeffrey Gleason
  • Patent number: 8629542
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: January 14, 2014
    Inventor: Glenn J. Leedy