Patents Examined by Tucker Wright
  • Patent number: 8796819
    Abstract: A non-volatile memory device including a variable resistance material is provided. The non-volatile memory device may include a buffer layer, a variable resistance material layer and/or an upper electrode, for example, sequentially formed on a lower electrode. A schottky barrier may be formed on an interface between the buffer layer and the lower electrode. The variable resistance material layer may be formed with a variable resistance property.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: August 5, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-hong Lee, Choong-rae Cho, Stefanovich Genrikh
  • Patent number: 8779445
    Abstract: A light emitting diodes (LEDs) is presented. The LED includes a stress-alleviation layer on a substrate. Open regions and stress-alleviation layer regions are formed on the substrate. Epitaxial layers are disposed on the substrate, at least in the open regions therein, thereby forming an LED structure. The substrate is diced through at least a first portion of the stress-alleviation regions, thereby forming the plurality of LEDs.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: July 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Hung-Ta Lin, Ding-Yuan Chen, Wen-Chih Chiou, Chia-Lin Yu
  • Patent number: 8766283
    Abstract: The invention relates to a light-emitting arrangement, having:—at least one light-emitting diode chip (1),—a multi-layer board (17) having a base (5) of a thermally well conducting material, in particular of metal, and—an electrical insulating and thermally conducting connection layer (2) between the emission surface of the light-diode chip (1) and the board (17).
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: July 1, 2014
    Assignee: Tridonic Optoelectronics GmbH
    Inventors: Stefan Tasch, Hans Hoschopf
  • Patent number: 8759876
    Abstract: A heterojunction for use in a transistor structure is provided. The heterojunction includes a barrier layer positioned beneath a gate region of the transistor structure. The barrier layer includes nitride-based semiconductor materials. A channel layer provides electrical conduction An intermediate layer near the barrier layer and including nitride-based semiconductor materials having a wider bandgap than the channel layer.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: June 24, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Bin Lu, Tomás Palacios
  • Patent number: 8754464
    Abstract: Non-volatile memory devices and methods of manufacturing the same are disclosed. In a non-volatile memory device, widths of a metal gate and an upper portion of a base gate in a gate electrode are less than the width of a hard mask pattern disposed on the metal gate. First and second protection spacers are disposed on opposing sidewalls of the metal gate and on opposing sidewalls of the upper portion of the base gate, respectively.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: June 17, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-Hwang Sim
  • Patent number: 8736013
    Abstract: In one general aspect, an apparatus includes a metal or metal silicide contact layer disposed on an n-well region of a semiconductor substrate to form a primary Schottky diode. The apparatus includes a p-well guard ring region of the semiconductor substrate abutting the primary Schottky diode. The metal silicide contact layer has a perimeter portion extending over the p-well guard ring region of the semiconductor substrate and the p-well guard ring region has a doping level establishing a work function difference relative to the perimeter portion of the metal silicide contact layer to form a guard ring Schottky diode. The guard ring Schottky diode is in series with a p-n junction interface of the p-well region and the n-well region and the guard ring Schottky diode has a polarity opposite to that of the primary Schottky diode.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: May 27, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Chris Nassar, Dan Hahn, Sunglyong Kim, Jongjib Kim
  • Patent number: 8735975
    Abstract: A method and structures are provided for implementing metal via gate node high performance stacked vertical transistors in a back end of line (BEOL) on a semiconductor System on Chip (SoC). The high performance stacked vertical transistors include a pair of stacked vertical field effect transistors (FETs) formed by polycrystalline depositions in a stack between planes of a respective global signal routing wire. A channel length of each of the stacked vertical FETs is delineated by the polycrystalline depositions with sequential source deposition, channel deposition and drain deposition; and a wire via defines the gate node.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8704267
    Abstract: The light-emitting display device comprises first and second thin film transistors. The first thin film transistor includes a first gate electrode; a first oxide semiconductor film; and a first electrode and a second electrode which are electrically connected to the first oxide semiconductor film. The second thin film transistor includes a second gate electrode electrically connected to the second electrode; a second oxide semiconductor film; a third electrode; a light-emitting layer and a fourth electrode over the second oxide semiconductor film. A work function of the second oxide semiconductor film is higher than a work function of the fourth electrode.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: April 22, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hiromichi Godo
  • Patent number: 8704271
    Abstract: A bidirectional electrostatic discharge (ESD) protection device includes a substrate having a topside semiconductor surface that includes a first silicon controlled rectifier (SCR) and a second SCR formed therein including a patterned p-buried layer (PBL) including a plurality of PBL regions. The first SCR includes a first and second n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a first merged drain. The second SCR includes a third and a fourth n-channel remote drain MOS device each having a gate, a source within a p-body, and sharing a second merged drain. The plurality of PBL regions are directly under at least a portion of the sources while being excluded from being directly under either of the merged drains.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: April 22, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Henry Litzmann Edwards, Akram A. Salman
  • Patent number: 8698252
    Abstract: A semiconductor device having five gate stacks on different regions of a substrate and methods of making the same are described. The device includes a semiconductor substrate and isolation features to separate the different regions on the substrate. The different regions include a p-type field-effect transistor (pFET) core region, an input/output pFET (pFET IO) region, an n-type field-effect transistor (nFET) core region, an input/output nFET (nFET IO) region, and a high-resistor region.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 15, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Nien Chen, Jin-Aun Ng, Ming Zhu, Bao-Ru Young, Hak-Lay Chuang
  • Patent number: 8692392
    Abstract: A wafer is disclosed. The wafer comprises a plurality of chips and a plurality of kerfs. A kerf of the plurality of kerfs separates one chip from another chip. The kerf comprises a crack stop barrier.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 8, 2014
    Assignee: Infineon Technologies AG
    Inventor: Sylvia Baumann Winter
  • Patent number: 8686419
    Abstract: A memory device in a 3-D read and write memory includes a resistance-changing layer, and a local contact resistance in series with, and local to, the resistance-changing layer. The local contact resistance is established by a junction between a semiconductor layer and a metal layer. Further, the local contact resistance has a specified level of resistance according to a doping concentration of the semiconductor and a barrier height of the junction. A method for fabricating such a memory device is also presented.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: April 1, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Franz Kreupl, Deepak C Sekar
  • Patent number: 8687198
    Abstract: A ring laser gyroscope includes active cavity containing gain medium, first reflective surfaces coupled to active cavity, medium exciter to excite gain medium, second reflective surfaces coupled to first passive cavity, and third reflective surfaces coupled to second passive cavity. Excited gain medium induces first and second laser fields within active cavity. First plurality of reflective surfaces includes first, second, and third reflective surfaces that reflect light within active cavity. Second plurality of reflective surfaces includes first, fourth, and fifth reflective surfaces that reflect light within first passive cavity. Third plurality of reflective surfaces includes fourth, sixth, and seventh reflective surfaces that reflect light within second passive cavity. First and fourth reflective surfaces are partially transmissive such that they both transmit and reflect light.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 1, 2014
    Assignee: Honeywell International Inc.
    Inventors: Mary K. Salit, Kenneth Salit, Paul E. Bauhahn
  • Patent number: 8680504
    Abstract: A method of forming a phase-change random access memory (PRAM) cell, and a structure of a phase-change random access memory (PRAM) cell are disclosed. The PRAM cell includes a bottom electrode, a heater resistor coupled to the bottom electrode, a phase change material (PCM) thrilled over and coupled to the heater resistor, and a top electrode coupled to the phase change material. The phase change material contacts a portion of a vertical surface of the heater resistor and a portion of a horizontal surface of the heater resistor to form an active region between the heater resistor and the phase change material.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: March 25, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Xia Li
  • Patent number: 8669612
    Abstract: A method of manufacturing a semiconductor device is disclosed and starts with a semiconductor substrate having a heavily doped N region at the bottom main surface and having a lightly doped N region at the top main surface. There are a plurality of trenches in the substrate, with each trench having a first extending portion extending from the top main surface towards the heavily doped region. Each trench has two sidewall surfaces in parallel alignment with each other. A blocking layer is formed on the sidewalls and the bottom of each trench. Then a P type dopant is obliquely implanted into the sidewall surfaces to form P type doped regions. The blocking layer is then removed. The bottom of the trenches is then etched to remove any implanted P type dopants. The implants are diffused and the trenches are filled.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 11, 2014
    Inventor: Richard A. Blanchard
  • Patent number: 8653513
    Abstract: A semiconductor device includes an oxide semiconductor layer, a source electrode and a drain electrode in contact with the oxide semiconductor layer, a gate electrode overlapping with the oxide semiconductor layer, and a gate insulating layer between the oxide semiconductor layer and the gate electrode, in which the source electrode or the drain electrode comprises a first conductive layer and a second conductive layer having a region which extends beyond an end portion of the first conductive layer in a channel length direction and which overlaps with part of the gate electrode, in which a sidewall insulating layer is provided over the extended region of the second conductive layer, and in which the sidewall insulating layer comprises a stack of a plurality of different material layers.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: February 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideomi Suzawa, Shinya Sasagawa, Motomu Kurata
  • Patent number: 8648354
    Abstract: Electronic field effect devices, and methods of manufacture of these electronic field effect devices are disclosed. In particular, there is disclosed an electronic field effect device which has improved electrical properties due to the formation of a highly mobile two-dimensional charge-carrier gas in a simple structure formed from diamond in combination with polar materials.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 11, 2014
    Assignee: Diamond Microwave Devices Limited
    Inventors: Christopher John Howard Wort, Geoffrey Alan Scarsbrook, Ian Friel, Richard Stuart Balmer
  • Patent number: 8642990
    Abstract: A method of forming a phase-change random access memory (PRAM) cell, and a structure of a phase-change random access memory (PRAM) cell are disclosed. The PRAM cell includes a bottom electrode, a heater resistor coupled to the bottom electrode, a phase change material (PCM) formed over and coupled to the heater resistor, and a top electrode coupled to the phase change material. The phase change material contacts a portion of a vertical surface of the heater resistor and a portion of a horizontal surface of the heater resistor to form an active region between the heater resistor and the phase change material.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: February 4, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Xia Li
  • Patent number: 8624256
    Abstract: The present invention provides a display device which forms a drive circuit using a bottom-gate-type TFT made of poly-Si which generates a small leak current in a periphery of a display region. A gate electrode is made of Mo having a high melting point, and a gate insulation film is formed on the gate electrode. A channel layer constituted of a poly-Si layer is formed on the gate insulation film, and the poly-Si layer is covered with an a-Si layer. An n+Si layer is formed on the a-Si layer, and an SD electrode is formed on the n+Si layer. Although holes are induced in the poly-Si layer when a negative voltage (inverse bias) is applied to the gate electrode, the holes cannot pass through the a-Si layer and hence, no drain current flows. Accordingly, it is possible to realize a bottom-gate-type TFT using poly-silicon which generates a small leak current.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: January 7, 2014
    Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Takuo Kaitoh, Hidekazu Miyake, Takeshi Sakai, Terunori Saitou
  • Patent number: 8610239
    Abstract: A semiconductor device including an isolation layer structure including a doped polysilicon layer pattern doped with first and second impurities of first and second conductivity types at lower and upper portions thereof, the doped polysilicon layer pattern being on an inner wall of a first trench on a substrate including an active region in which the first trench is not formed and a field region including the first trench, and an insulation structure filling a remaining portion of the first trench; a gate structure on the active region; a well region at a portion of the active region adjacent to lower portions of the doped polysilicon layer pattern and being doped with third impurities of the second conductivity type; and a source/drain at a portion of the active region adjacent to upper portions of the doped polysilicon layer pattern and being doped with fourth impurities of the first conductivity type.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Uk Han, Satoru Yamada