Patents Examined by Yosef Gebreyesus
  • Patent number: 10103112
    Abstract: A circuit board with a measure against high frequency noise includes: an interconnect substrate having an interconnect pattern to which an IC which is a source of high frequency noise is electrically connected; a pair of lands provided on a mounting surface of the interconnect substrate; and a chip component having a body composed of a magnetic body (i.e., ferrite) in a rectangular parallelepiped, and a pair of external electrodes provided at opposite ends of the body, the pair of external electrodes being connected to the pair of lands, the body being disposed on the interconnect pattern, as observed in a direction perpendicular to the mounting surface.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: October 16, 2018
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Yu Ishiwata
  • Patent number: 10103145
    Abstract: A semiconductor structure, such as a microchip that includes a finFET, includes fins that have a 2D material, such as Graphene, upon at least the fin sidewalls. The thickness of the 2D material sidewall may be tuned to achieve desired finFET band gap control. Neighboring fins of the semiconductor structure form fin wells. The semiconductor structure may include a fin cap upon each fin and the 2D material is formed upon the sidewalls of the fin and the bottom surface of the fin wells. The semiconductor structure may include a well-plug at the bottom of the fin wells and the 2D material is formed upon the sidewalls and upper surface of the fins. The semiconductor structure may include both fin caps and well-plugs such that the 2D material is formed only upon the sidewalls of the fins.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 16, 2018
    Assignee: International Business Machines Corporation
    Inventors: Sami Rosenblatt, Rasit O. Topaloglu
  • Patent number: 10103144
    Abstract: A semiconductor structure, such as a microchip that includes a finFET, includes fins that have a 2D material, such as Graphene, upon at least the fin sidewalls. The thickness of the 2D material sidewall may be tuned to achieve desired finFET band gap control. Neighboring fins of the semiconductor structure form fin wells. The semiconductor structure may include a fin cap upon each fin and the 2D material is formed upon the sidewalls of the fin and the bottom surface of the fin wells. The semiconductor structure may include a well-plug at the bottom of the fin wells and the 2D material is formed upon the sidewalls and upper surface of the fins. The semiconductor structure may include both fin caps and well-plugs such that the 2D material is formed upon the sidewalls of the fins.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: October 16, 2018
    Assignee: International Business Machines Corporation
    Inventors: Sami Rosenblatt, Rasit O. Topaloglu
  • Patent number: 10103069
    Abstract: A printed electrical connection structure includes a substrate having one or more electrical connection pads and a micro-transfer printed component having one or more connection posts. Each connection post is in electrical contact with a connection pad. A resin is disposed between and in contact with the substrate and the component. The resin has a reflow temperature less than a cure temperature. The resin repeatedly flows at the reflow temperature when temperature-cycled between an operating temperature and the reflow temperature but does not flow after the resin is exposed to a cure temperature. A solder can be disposed on the connection post or the connection pad. After printing and reflow, the component can be tested and, if the component fails, another component is micro-transfer printed to the substrate, the resin is reflowed again, the other component is tested and, if it passes the test, the resin is finally cured.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: October 16, 2018
    Assignee: X-Celeprint Limited
    Inventors: Christopher Andrew Bower, Ronald S. Cok, Matthew Meitl, Carl Ray Prevatte, Jr.
  • Patent number: 10096567
    Abstract: A package substrate including a carrier, a first patterned conductive layer, a second patterned conductive layer and a 3D-printing conductive wire is provided. The carrier has a first surface, a second surface and a third surface. The first surface is opposite to the second surface, and the third surface is connected between the first surface and the second surface. The first patterned conductive layer is disposed on the first surface. The second patterned conductive layer is disposed on the second surface. The 3D-printing conductive wire is disposed on the third surface and connected between the first patterned conductive layer and the second patterned conductive layer.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: October 9, 2018
    Assignee: Winbond Electronics Corp.
    Inventor: Yu-Ming Chen
  • Patent number: 10090290
    Abstract: An electrostatic discharge (ESD) protection structure containing a bottom diode and a top diode vertically stacked on the bottom diode is provided to render sufficient protection from ESD events with reduced diode footprint. The bottom diode is serially connected to the top diode via a conductive strap structure.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: October 2, 2018
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Bahman Hekmatshoartabari, Karthik Balakrishnan, Tak Ning
  • Patent number: 10083976
    Abstract: A nonvolatile memory (NVM) cell includes a semiconductor substrate having a first OD region and a second OD region for forming an erase gate (EG) region. The second OD region is spaced apart from the first OD region and is separated from the first OD region by a trench isolation region. A select transistor is disposed on the first OD region. A floating gate transistor is serially connected to the select transistor and is also disposed on the first OD region. The floating gate transistor includes a floating gate overlying the first OD region. A first floating gate extension continuously extends from the floating gate to the second OD region. The first floating gate extension comprises a P+ doped segment and an N+ doped segment with a P+/N+ interface therebetween.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: September 25, 2018
    Assignee: eMemory Technology Inc.
    Inventors: Chia-Jung Hsu, Wein-Town Sun
  • Patent number: 10083994
    Abstract: The present disclosure relates provide a flexible display panel and a display device. The flexible display panel includes: a flexible substrate; an inorganic layer disposed on the flexible substrate; and signal lines which are arranged in parallel along a first direction and located within the inorganic layer; wherein the signal lines are electrically connected with the display units and extend along a second direction to the wiring area; the inorganic layer includes a signal line spacing area and signal line covering areas; on a plane where the flexible substrate is located, an orthographic projection of the signal line spacing area does not overlap projections of the signal lines, and orthographic projections of the signal line covering areas cover the signal lines; in a direction perpendicular to the flexible substrate, a top end of the signal line spacing area is higher than top ends of the signal line covering areas.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: September 25, 2018
    Assignee: SHANGHAI TIANMA MICRO-ELECTRONICS CO., LTD.
    Inventor: Xu Qian
  • Patent number: 10084000
    Abstract: An array substrate and manufacturing method thereof, a display panel and a display device are provided. The array substrate includes a display area and a peripheral circuit area. The method includes forming an amorphous silicon thin film on the base substrate, forming a first amorphous silicon layer in the display area and a second amorphous silicon layer in the peripheral circuit area by a patterning process, so that a thickness of the first amorphous silicon layer is less than a thickness of the second amorphous silicon layer; and processing the first amorphous silicon layer and the second amorphous silicon layer simultaneously by an excimer laser annealing to form a first poly-silicon layer in the display area and a second poly-silicon layer in the peripheral circuit area, a grain size of the first poly-silicon layer being less than a grain size of the second poly-silicon layer.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 25, 2018
    Assignee: BOE Technology Group Co., Ltd.
    Inventor: Xueyan Tian
  • Patent number: 10068885
    Abstract: An optical apparatus includes a substrate 1, a wiring pattern 8 formed on the substrate 1, a light-receiving element 3 and a light-emitting element 2 provided on the substrate 1 and spaced apart from each other in a direction x, a light-transmitting resin 4 covering the light-receiving element 3, a light-transmitting resin 5 covering the light-emitting element 2, and a light-shielding resin 6 covering the light-transmitting resin 4 and the light-transmitting resin 5. The wiring pattern 8 includes a first light-blocking portion 83 interposed between the light-shielding resin 6 and the substrate 1 and positioned between the light-receiving element 3 and the light-emitting element 2 as viewed in x-y plane. The first light-blocking portion 83 extends across the light-emitting element 2 as viewed in the direction x.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 4, 2018
    Assignee: ROHM CO., LTD.
    Inventors: Yuji Makimura, Okimoto Kondo
  • Patent number: 10062645
    Abstract: An interconnect and a method of forming an interconnect for a semiconductor device is provided. The interconnect is formed by treating an upper surface of a dielectric layer to create a high density layer. The treatment may include, for example, creating a high density monolayer using hexamethyldisilazane (HMDS), trimethylsilydiethylamine (TMSDEA) or trimethylsilylacetate (OTMSA). After treating, the dielectric layer may be patterned to create openings, which are subsequently filled with a conductive material. Excess conductive material may be removed using, for example, a chemical mechanical polishing.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: August 28, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Hsin Kuo, Chung-Chi Ko, Neng-Jye Yang, Fu-Ming Huang, Chi-Ming Tsai, Liang-Guang Chen
  • Patent number: 10062819
    Abstract: An LED die conformally coated with phosphor is mounted at the base of a shallow, square reflector cup. The cup has flat reflective walls that slope upward from its base to its rim at a shallow angle of approximately 33 degrees. A clear encapsulant completely fills the cup to form a smooth flat top surface. Any emissions from the LED die or phosphor at a low angle are totally internally reflected at the flat air-encapsulant interface toward the cup walls. This combined LED/phosphor light is then reflected upward by the walls and out of the package. Since a large percentage of the light emitted by the LED and phosphor is mixed by the TIR and the walls prior to exiting the package, the color and brightness of the reflected light is fairly uniform across the beam. The encapsulant is intentionally designed to enhance TIR to help mix the light.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: August 28, 2018
    Assignee: Lumileds LLC
    Inventor: Mark Melvin Butterworth
  • Patent number: 10050182
    Abstract: A light emitting device includes: a light emitting element including: a semiconductor structure including an n-type semiconductor layer, an active layer, and a p-type semiconductor layer, each containing a nitride semiconductor, a p-electrode disposed on a portion of a surface of the p-type semiconductor layer on a side opposite to a surface provided with the active layer, and an n-electrode disposed on a surface of the n-type semiconductor layer on a side opposite to a surface provided with the active layer in a region other than a region facing the p-electrode; and a protective film continuously covering a surface of the n-electrode and a surface of the n-type semiconductor layer. The protective film includes a first metal oxide film and a second metal oxide film that are alternately layered, the first metal oxide film containing a first metal, and the second metal oxide film containing a second metal.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 14, 2018
    Assignee: NICHIA CORPORATION
    Inventors: Takaaki Tada, Takayoshi Wakaki
  • Patent number: 10050102
    Abstract: Semiconductor devices and manufacturing method thereof are disclosed. The semiconductor device includes a substrate, a device layer, first and second conductive layers, first and second vias, and a MIM capacitor structure. The substrate includes active and passive regions. The device layer is in the active region. The first conductive layer is over the device layer. The second conductive layer is over the first conductive layer, wherein the first conductive layer is disposed between the device layer and the second conductive layer. The first via electrically connects the first and the second conductive layers. The MIM capacitor structure is between the first and the second conductive layers and in the passive region, and includes first and second electrodes and a capacitor dielectric layer therebetween. The capacitor dielectric layer includes Group IIIA-metal oxide or nitride. The second via electrically connects the second conductive layer and one of the first and second electrodes.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: August 14, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Ching Chang, Cheng-Yi Wu, Jian-Shin Tsai, Min-Hui Lin, Yi-Ming Lin, Chin-Szu Lee, Wen-Shan Chang, Yi-Hui Chen
  • Patent number: 10043871
    Abstract: Structure or device comprises a AlxGa1-xN or InyGa1-yN layer or substrate, a rare earth nitride epitaxial layer, and an AlzGa1-zN epitaxial interlayer between the rare earth nitride epitaxial layer and the AlxGa1-xN or InyGa1-yN layer or substrate. The interlayer is in direct contact with the rare earth nitride epitaxial layer and the AlxGa1-xN or InyGa1-yN layer or substrate.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: August 7, 2018
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Franck Natali, Stéphane Ange Vézian
  • Patent number: 10043664
    Abstract: A multilayer structure with excellent crystallinity and a semiconductor device of the multilayer structure with good mobility are provided. A multilayer structure includes: a corundum structured crystal substrate; and a crystalline film containing a corundum structured crystalline oxide as a major component, the film formed directly on the substrate or with another layer therebetween, wherein the crystal substrate has an off angle from 0.2° to 12.0°, and the crystalline oxide contains one or more metals selected from indium, aluminum, and gallium.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: August 7, 2018
    Assignee: FLOSFIA INC.
    Inventors: Masaya Oda, Akio Takatsuka, Toshimi Hitora
  • Patent number: 10032826
    Abstract: Provided is a light extraction substrate capable of achieving both light extraction efficiency and preservability. Before forming a cap layer, a step of reducing in-membrane water content such that the in-membrane water content of a layer formed between a gas barrier layer and the cap layer is less than 1.0×1015/mg is performed. The in-membrane water content of less than 1.0×1015/mg is maintained until at least a step of forming the cap layer after the step of reducing the in-membrane water content, and the cap layer is then formed through a dry process.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: July 24, 2018
    Assignee: KONICA MINOLTA, INC.
    Inventors: Takaaki Kuroki, Yasunobu Kobayashi
  • Patent number: 10032709
    Abstract: Systems and methods are provided for the embedding of thin chips. A well region is generated in a substrate that includes a conductive material disposed on a flexible polymer. The standoff well region can be generated by pattern the conductive material, where the thin chip is embedded in the standoff well region. A cavity can be generated in the polymer layer to form a polymer well region, where the thin chip is embedded in the polymer well region.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: July 24, 2018
    Assignee: MC10, INC.
    Inventors: Conor Rafferty, Mitul Dalal
  • Patent number: 10026806
    Abstract: In an embodiment, a high frequency amplifying circuit includes a semiconductor device. The semiconductor device includes a semiconductor substrate having a bulk resistivity ??100 Ohm·cm, a front surface and a rear surface, an LDMOS (Lateral Diffused Metal Oxide Semiconductor) transistor in the semiconductor substrate, and a RESURF structure comprising a doped buried layer arranged in the semiconductor substrate, spaced at a distance from the front surface and the rear surface, and coupled with at least one of a channel region and a body contact region of the LDMOS transistor.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: July 17, 2018
    Assignee: Infineon Technologies AG
    Inventors: Albert Birner, Helmut Brech, Matthias Zigldrum, Michaela Braun, Christian Eckl
  • Patent number: 10026817
    Abstract: A microelectronic device contains a high performance silicon nitride layer which is stoichiometric within 2 atomic percent, has a low stress of 600 MPa to 1000 MPa, and has a low hydrogen content, less than 5 atomic percent, formed by an LPCVD process. The LPCVD process uses ammonia and dichlorosilane gases in a ratio of 4 to 6, at a pressure of 150 millitorr to 250 millitorr, and at a temperature of 800° C. to 820° C.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: July 17, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Nicholas Stephen Dellas