Patents Examined by Yuechuan Yu
  • Patent number: 11939666
    Abstract: Methods and apparatus for processing a substrate include cleaning and self-assembly monolayer (SAM) formation for subsequent reverse selective atomic layer deposition. An apparatus may include a process chamber with a processing volume and a substrate support including a pedestal, a remote plasma source fluidly coupled to the process chamber and configured to produce radicals or ionized gas mixture with radicals that flow into the processing volume to remove residue or oxides from a surface of the substrate, a first gas delivery system with a first ampoule configured to provide at least one first chemical into the processing volume to produce a SAM on the surface of the substrate, a heating system located in the pedestal and configured to heat a substrate by flowing gas on a backside of the substrate, and a vacuum system fluidly coupled to the process chamber and configured to control heating of the substrate.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangjin Xie, Carmen Leal Cervantes, Feng Chen, Lu Chen, Wenjing Xu, Aravind Kamath, Cheng-Hsiung Matthew Tsai, Tae Hong Ha, Alexander Jansen, Xianmin Tang
  • Patent number: 11942308
    Abstract: A microwave plasma source that generates a microwave plasma in a processing space in which a target substrate is processed, includes: a microwave generation part for generating microwave; a waveguide through which the microwave generated by the microwave generation part propagates; an antenna part including a slot antenna having a predetermined pattern of slots formed therein and being configured to radiate the microwave propagating through the waveguide into the processing space and a microwave-transmitting plate being made of a dielectric material and being configured to transmit the microwave radiated from the slots therethrough and supply the microwave into the processing space; a temperature detector for detecting a temperature at a predetermined position in a microwave propagation path leading to the slot antenna; and an abnormality detection part for receiving the temperature detected by the temperature detector and detect an abnormality in the microwave propagation path based on the detected temperatu
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: March 26, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Yasuaki Taniike
  • Patent number: 11923172
    Abstract: Processing chambers with a plurality of processing stations and individual wafer support surfaces are described. The processing stations and wafer support surfaces are arranged so that there is an equal number of processing stations and heaters. An RF generator is connected to a first electrode in a first station and a second electrode in a second station. A bottom RF path is formed by a connection between a first support surface and a second support surface.
    Type: Grant
    Filed: February 8, 2022
    Date of Patent: March 5, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Hari Ponnekanti, Tsutomu Tanaka, Mandyam Sriram, Dmitry A. Dzilno, Sanjeev Baluja, Mario D. Silvetti
  • Patent number: 11915911
    Abstract: An apparatus for distributing plasma products includes first and second electrodes that each include planar surfaces. The first electrode forms first apertures from a first planar surface to a second planar surface; the second electrode forms second apertures from the third planar surface to the fourth planar surface. The electrodes couple through one or more adjustable couplers such that the third planar surface is disposed adjacent to the second planar surface with a gap therebetween, the gap having a gap distance. Each of the adjustable couplers has a range of adjustment. The first and second apertures are arranged such that for at least one position within the ranges of adjustment, none of the first apertures aligns with any of the second apertures to form an open straight-line path extending through both the first and second electrodes.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: February 27, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Saravjeet Singh, Dmitry Lubomirsky, Tae Wan Kim, Kenneth D. Schatz, Tae Seung Cho, Lok Kee Loh
  • Patent number: 11915923
    Abstract: A plasma processing system is provided. The system includes a hydrogen gas supply and a hydrocarbon gas supply and a processing chamber. The system includes a first mass flow controller (MFC) for controlling hydrogen gas flow into the processing chamber and a second MFC for controlling hydrocarbon gas flow into the processing chamber. The system includes a plasma source for generating plasma at the processing chamber. The plasma is for etching SnO2. The system includes a controller for regulating the first MFC and the second MFC such that a ratio of hydrocarbon gas flow to the hydrogen gas flow into the processing chamber is between 1% and 60% so that when SnH4 is produced during said etching SnO2. The SnH4 is configured to react with hydrocarbon gas to produce an organotin compound that is volatilizable in a reaction that is more kinetically favorable than SnH4 decomposition into Sn powder.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: February 27, 2024
    Assignee: Lam Research Corporation
    Inventors: Akhil Singhal, Dustin Zachary Austin, Jeongseok Ha, Pei-Chi Liu
  • Patent number: 11894220
    Abstract: Methods and systems for processing substrates are provided. The system can include: a processing chamber configured to process a substrate based on a recipe; a plurality of sub-systems in operable communication with the processing chamber for controlling corresponding parameters associated with processing the substrate; and a controller in operable communication with the processing chamber and each of the plurality of sub-systems and configured to control each of the plurality of sub-systems and the processing chamber using information included in the recipe and feedback provided by at least one of the plurality of sub-systems. The controller is configured to compare information included in the recipe and feedback provided by at least one of the plurality of sub-systems with stored empirical information relating to the recipe and each of the plurality of sub-systems, and adjust at least one of the corresponding parameters associated with processing the substrate based on a determined comparison.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: February 6, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Nichols, Tina Dhekial-Phukan, Venkata Ravishankar Kasibhotla, Ajit Balakrishna, Sanggyum Kim
  • Patent number: 11887812
    Abstract: Bias supplies, plasma processing systems, and associated methods are disclosed. One bias supply comprises a first inductor coupled between a first node of a switch and an output node where a first node of a second inductor is coupled to one of the output node or the first node of the switch. A voltage source is coupled between a second node of the switch and a second node of the second inductor. A connection is made between the return node and one of the second node of the switch and the second node of the second inductor. The bias supply also comprises a controller configured to cause an application of the periodic voltage between the output node and the return node by repeatedly closing the switch so current through the switch completes a full cycle.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: January 30, 2024
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Hien Minh Nguyen, Gideon Van Zyl
  • Patent number: 11887878
    Abstract: Embodiments of a substrate support are provided herein. In some embodiments, a substrate support for use in a substrate processing chamber includes a lower assembly having a base plate assembly, wherein the base plate assembly includes a plurality of electrical feedthroughs disposed about a central protrusion; a ceramic puck disposed on the lower assembly and removeably coupled to the base plate assembly, wherein the ceramic puck has an electrode disposed therein that is electrically coupled to first pair of electrical feedthroughs of the plurality of electrical feedthroughs; and a flexible connector having a spiral portion disposed between the ceramic puck and each of the plurality of electrical feedthroughs to allow for differences in thermal expansion of the ceramic puck and the base plate assembly.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: January 30, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shreesha Yogish Rao, Mukund Sundararajan, Cheng-Hsiung Matthew Tsai, Manjunatha P. Koppa, Steven V. Sansoni
  • Patent number: 11887819
    Abstract: In one embodiment, a plasma processing device may include a dielectric window, a vacuum chamber, an energy source, and at least one air amplifier. The dielectric window may include a plasma exposed surface and an air exposed surface. The vacuum chamber and the plasma exposed surface of the dielectric window can cooperate to enclose a plasma processing gas. The energy source can transmit electromagnetic energy through the dielectric window and form an elevated temperature region in the dielectric window. The at least one air amplifier can be in fluid communication with the dielectric window. The at least one air amplifier can operate at a back pressure of at least about 1 in-H2O and can provide at least about 30 cfm of air.
    Type: Grant
    Filed: October 5, 2022
    Date of Patent: January 30, 2024
    Assignee: Lam Research Corporation
    Inventors: Jon McChesney, Saravanapriyan Sriraman, Richard A. Marsh, Alexander Miller Paterson, John Holland
  • Patent number: 11866823
    Abstract: A substrate processing device capable of preventing deformation of a substrate during a process includes a substrate supporting unit having a contact surface that comes into contact with an edge of a substrate to be processed, wherein the substrate supporting unit includes a protruding (e.g. embossed) structure protruding from a base to support deformation from the inside of the edge of the substrate to be processed.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: January 9, 2024
    Assignee: ASM IP Holding B.V.
    Inventors: SeungHwan Lee, HakYong Kwon, JongSu Kim, SungBae Kim, JuHyuk Park
  • Patent number: 11869754
    Abstract: System and methods of improving dynamic pressure response during recipe step transitions. An exemplary method may include changing at least one of a plurality of recipe parameters in accordance with a processing recipe while running the processing recipe on a semiconductor substrate in a processing chamber. The method may further include measuring a pressure response in the processing chamber responsive to the changing of the at least one of the plurality of recipe parameters, and determining a response error based on the pressure response and a model pressure response calculated based on the processing recipe. The method may further include, in response to determining that the response error may be greater than a threshold value, calculating an adjustment to an operation of a valve downstream of the processing chamber when changing the at least one of the plurality of recipe parameters in accordance with the processing recipe in subsequent runs.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: January 9, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Tina Dhekial-Phukan, Michael Nichols
  • Patent number: 11862436
    Abstract: A plasma processing apparatus includes a processing vessel; a placing table, serving as a lower electrode, disposed within the processing vessel; an upper electrode serving as a facing electrode of the placing table; a plasma processor configured to form a gas within the processing vessel into plasma by supplying a high frequency power and to process a processing target object on the placing table with the plasma; a cover member configured to cover the upper electrode from thereabove; a cooler provided within the cover member and configured to cool the upper electrode with a coolant having a temperature lower than a dew point temperature of exterior air outside the processing vessel; and a gas supply configured to supply a low-dew point gas having a dew point temperature lower than the dew point temperature of the exterior air into a space surrounded by the cover member and the upper electrode.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: January 2, 2024
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Toru Fujii, Yoshitomo Konta, Kohei Otsuki
  • Patent number: 11856837
    Abstract: Method for high throughput, highly reproducible, direct write plasma jet deposition of organic electronic materials through nozzles containing non-concentric tubes with inner tube having higher dielectric constant and/or higher wall thickness than the outer tube, so that the inner tube containing the aerosol of organic electronic materials is shielded from the outer tube containing plasma and the organic electronics is focused at the outlet of the nozzle through the after-glow region of the atmospheric pressure plasma. Ensuring reproducibility of the method for printing organic electronic materials by removing the contaminants and residues in inner tube using reactive gas and generating a plasma discharge at a potential significantly higher than the operating potential for printing so that the plasma is generated in both the inner and outer tube for dielectric barrier discharge plasma jet based cleaning of the nozzle.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: December 26, 2023
    Assignee: Universities Space Research Association
    Inventor: Ramprasad Gandhiraman
  • Patent number: 11851759
    Abstract: A faceplate for a substrate process chamber comprises a first and second surface. The second surface is shaped such that the second surface includes a peak and a distance between the first and second surface varies across the width of the faceplate. The second surface of the faceplate is exposed to a processing volume of the process chamber. Further, the faceplate may be part of a lid assembly for the process chamber. The lid assembly may include a blocker plate facing the first surface of the faceplate. A distance between the blocker plate and the first surface is constant.
    Type: Grant
    Filed: December 16, 2022
    Date of Patent: December 26, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Shailendra Srivastava, Sai Susmita Addepalli, Nikhil Sudhindrarao Jorapur, Daemian Raj Benjamin Raj, Amit Kumar Bansal, Juan Carlos Rocha-Alvarez, Gregory Eugene Chichkanoff, Xinhai Han, Masaki Ogata, Kristopher Enslow, Wenjiao Wang
  • Patent number: 11846017
    Abstract: Provided is a hot filament CVD device capable of easily attaching, detaching, and replacing a filament. The hot filament CVD device includes a chamber, a base material support that supports multiple base materials, filament cartridges, and paired holding parts. The filament cartridges each include multiple filaments (60), a first frame, a second frame, and paired connecting members. The paired holding parts guide each of the filament cartridges when it is inserted into the chamber, and hold the filament cartridges in the chamber so that the filament cartridges face the multiple base materials.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: December 19, 2023
    Assignee: KOBE STEEL, LTD.
    Inventors: Tetsuya Takahashi, Satoshi Hirota, Rainer Cremer
  • Patent number: 11846011
    Abstract: Exemplary semiconductor processing chambers may include a substrate support positioned within a processing region of the semiconductor processing chamber. The chamber may include a lid plate. The chamber may include a gasbox positioned between the lid plate and the substrate support. The gasbox may be characterized by a first surface and a second surface opposite the first surface. The gasbox may define a central aperture. The gasbox may define an annular channel in the first surface of the gasbox extending about the central aperture through the gasbox. The gasbox may include an annular cover extending across the annular channel defined in the first surface of the gasbox. The chamber may include a blocker plate positioned between the gasbox and the substrate support. The chamber may include a ferrite block positioned between the lid plate and the blocker plate.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: December 19, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Shuran Sheng, Lin Zhang, Joseph C. Werner
  • Patent number: 11842885
    Abstract: A plasma processing apparatus or a plasma processing method that processes a wafer to be processed, which is placed on a surface of a sample stage arranged in a processing chamber inside a vacuum container, using a plasma formed in the processing chamber, the apparatus or method including processing the wafer by adjusting a first high-frequency power to be supplied to a first electrode arranged inside the sample stage and a second high-frequency power to be supplied, via a resonant circuit, to a second electrode which is arranged in an inner side of a ring-shaped member made of a dielectric arranged on an outer peripheral side of a surface of the sample stage on which the wafer is placed, during the processing.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: December 12, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Tooru Aramaki, Kenetsu Yokogawa, Masaru Izawa
  • Patent number: 11835465
    Abstract: Provided is a detecting device of gas components that includes a gas component detecting unit for detection of a light emission of plasma that is formed by re-excitation downstream of an arrangement position of an object to be processed.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 5, 2023
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Yoshifumi Ogawa, Yutaka Kouzuma, Masaru Izawa
  • Patent number: 11837496
    Abstract: A substrate processing apparatus including a process chamber; a susceptor in the process chamber; and an inner edge ring and an outer edge ring on the susceptor, wherein the inner edge ring includes a semiconductor, the outer edge ring includes an insulator, an upper surface of the outer edge ring is at a higher level than an upper surface of the inner edge ring, and the outer edge ring has an overhang extending onto the inner edge ring.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: December 5, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong Woo Sun, Sung Moon Park, Je Woo Han, Kwang Nam Kim, Ho Chang Lee, Young Hoon Jeong, Masayuki Tomoyasu
  • Patent number: 11834739
    Abstract: Graphene printing is disclosed. A disclosed example graphene printing apparatus includes a gas source to cause a graphene precursor gas to flow across a surface of a substrate, and a localized heat source to locally heat portions of the surface to cause graphene to grow at the portions of the surface based on a printing pattern.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: December 5, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Robert Ionescu, Helen A Holder, Ning Ge, Jarrid Wittkopf