Patents by Inventor Aaron K. Nienaber

Aaron K. Nienaber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220055185
    Abstract: Coated abrasive articles having spacer particles are formed by providing a production tool having a dispensing surface with a plurality of cavities, guiding the production tool past an abrasive particle feeder, dispensing shaped abrasive particles onto the dispensing surface and into the plurality of cavities of the production tool, guiding a resin coated backing sheet adjacent the production tool past a spacer particle feeder, and dispensing spacer particles onto the resin coated backing sheet and/or the production tool after the abrasive particle feeder prior to a deposit point for the shaped abrasive particles. The spacer particles are selected to have a thickness that is greater than a thickness of a resin coating of the resin coating backing sheet and a thickness and density once dispensed that are sufficient to substantially prevent the production tool from contacting the resin coated backing sheet at the deposit point.
    Type: Application
    Filed: December 10, 2019
    Publication date: February 24, 2022
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Thomas J. Nelson, Ann M. Hawkins, Amelia W. Koenig
  • Publication number: 20220055187
    Abstract: Various embodiments of the present disclosure relate to a shaped abrasive particle transfer assembly. The shaped abrasive particle transfer assembly includes a substrate including an adhesive and a plurality of shaped abrasive particles adhered to the substrate and forming a predetermined pattern thereon.
    Type: Application
    Filed: December 17, 2019
    Publication date: February 24, 2022
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Thomas J. Nelson, Amelia W. Koenig, Ann M. Hawkins
  • Publication number: 20220055182
    Abstract: Various embodiments disclosed relate to a tooling apparatus and method for providing multiple orientation cavities in tooling for abrasive particles in an abrasive article or structure. An example method includes aligning a plurality of shaped abrasive particles into a pattern, including collecting the plurality of shaped abrasive particles at least partially into cavities arranged on a dispensing surface, where at least one of the cavities is configured to allow for multiple orientations of one of the plurality of shaped abrasive particles. The pattern is transferred to a backing substrate containing a layer of adhesive, and the adhesive is cured.
    Type: Application
    Filed: December 17, 2019
    Publication date: February 24, 2022
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Thomas J. Nelson, Ann M. Hawkins, Amelia W. Koenig
  • Patent number: 11253972
    Abstract: A structured abrasive article comprises a plurality of shaped abrasive composites disposed on and secured to a major surface of a backing. The shaped abrasive composites comprise magnetizable abrasive particles retained in an organic binder. On a respective basis, each of the magnetizable abrasive particles has a ceramic body with a magnetizable layer disposed on at least a portion thereof. Methods of making and using the structured abrasive articles are also disclosed.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: February 22, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Thomas J. Nelson, Joseph B. Eckel, Aaron K. Nienaber, Scott W. Peterson, Vincent R. Jansen
  • Publication number: 20220048162
    Abstract: Various embodiments disclosed relate to an abrasive article and method of forming abrasive articles using backfill to secure orientation of shaped abrasive particles. An example method includes aligning a plurality of shaped abrasive particles into a pattern, and transferring the pattern to a backing substrate containing a layer of adhesive. Prior to curing the adhesive, a plurality of backfill particles are transferred to the backing substrate, where at least some of the plurality of backfill particles are disposed between the plurality of shaped abrasive particles.
    Type: Application
    Filed: December 17, 2019
    Publication date: February 17, 2022
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Thomas J. Nelson, Junting Li, Ann M. Hawkins, Amelia W. Koenig
  • Publication number: 20220040816
    Abstract: Apparatus includes a production tooling having a dispensing surface with a plurality of cavities and formed into an endless belt. An abrasive particle feeder dispenses shaped abrasive particles onto the dispensing surface and into the plurality of cavities. A resin coated backing receives shaped abrasive particles from the cavities of the production tooling at a deposit point. A detecting device detects a pattern transition zone as the production tooling moves in the direction of travel and provides pattern transition zone detection data to one or more controllers to control a speed of the production tooling and/or a speed of the resin coated backing as the detected pattern transition zone passes the deposit point to change a pattern density of the shaped abrasive particles in a portion of the resin coated backing corresponding to the pattern transition zone of the production tooling.
    Type: Application
    Filed: December 10, 2019
    Publication date: February 10, 2022
    Inventors: Joseph B. Eckel, Thomas J. Nelson, Aaron K. Nienaber, Ann M. Hawkins, Amelia W. Koenig, Negus B. Adefris
  • Publication number: 20220040815
    Abstract: The present disclosure provides systems, devices, and methods for abrasive articles and manufacturing the same. A shaped abrasive particle placement tool can include a substrate including an abrasive particle receiving surface defining an x-y plane including an x-axis and a y-axis and a back surface opposite the abrasive particle receiving surface, cavities formed in the substrate, the cavities including one or more sidewalls, the cavities including a width and length at the abrasive article receiving surface, and a depth defined by a distance the first cavities extend from the abrasive article receiving surface towards the back surface in a direction parallel to a z-axis perpendicular to the x-y plane, and respective protrusions between two or more proximate cavities, the respective protrusions extending from the abrasive article receiving surface in a direction parallel to the z-axis and away from the back surface, and shaped abrasive particles situated in the cavities.
    Type: Application
    Filed: December 17, 2019
    Publication date: February 10, 2022
    Inventors: Aaron K. Nienaber, Joseph B. Eckel, Thomas J. Nelson, Ann M. Hawkins, Amelia W. Koenig, Yuyang Liu
  • Publication number: 20220041909
    Abstract: The present disclosure provides systems, devices, and methods for abrasive articles and manufacturing the same. An abrasive article can include a substrate shaped particles disposed on the substrate, wherein the shaped particles include first shaped abrasive particles and second shaped particles, and wherein a characteristic of the first shaped abrasive particles is different from a corresponding characteristic of the second shaped particles, and at least one binding agent securing the shaped particles to the substrate.
    Type: Application
    Filed: December 13, 2019
    Publication date: February 10, 2022
    Inventors: Aaron K. Nienaber, Joseph B. Eckel, Thomas J. Nelson, Ann M. Hawkins, Amelia W. Koenig
  • Publication number: 20220040817
    Abstract: A system and method for producing an abrasive article includes a production tool configured to provide shaped abrasive particles to a resin coated backing. A first end and a second end of the production tool are spliced together to form a spliced area. The production tool includes a dispensing surface that includes a plurality of cavities formed between the first end and the second end and configured to receive and hold the shaped abrasive particles. The resin coated backing is configured to receive the shaped abrasive particles from the dispensing surface of the production tool and configured to receive further shaped abrasive particles to fill gaps in the shaped abrasive particles caused by an absence of the plurality of cavities in the spliced area.
    Type: Application
    Filed: December 17, 2019
    Publication date: February 10, 2022
    Inventors: Thomas J. Nelson, Aaron K. Nienaber, Joseph B. Eckel, Ann M. Hawkins, Amelia W. Koenig
  • Publication number: 20220040814
    Abstract: Abrasive articles and associated methods are shown that include abrasive particles arranged in one or more symbols on a backing substrate. Examples include shaped abrasive particles arranged into one or more symbols. Other examples include one or more wear particles with a height less than other abrasive particles, such that when exposed, the wear particles indicate a wear condition of the abrasive article.
    Type: Application
    Filed: December 17, 2019
    Publication date: February 10, 2022
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Thomas J. Nelson, Ann M. Hawkins, Amelia W. Koenig
  • Publication number: 20220001514
    Abstract: According to various embodiment of the present disclosure, a bonded abrasive article precursor includes a curable composition. The curable composition includes a curative component. The curable composition further includes one or more resins. The curable composition further includes a plurality of shaped abrasive particles. The curable composition is curable in an amount of time in a range of from about 0.1 minutes to about 20 minutes at a temperature of about 25° C. to about 160° C.
    Type: Application
    Filed: December 16, 2019
    Publication date: January 6, 2022
    Inventors: Brett A. Beiermann, Aaron K. Nienaber, Joseph B. Eckel, Maiken Givot, Thomas J. Nelson, Robinette S. Alkhas, Dwight D. Erickson, Loc X. Van, Melissa C. Schillo-Armstrong
  • Publication number: 20220001516
    Abstract: A coated abrasive belt (100) includes a belt backing (110) and an abrasive layer disposed thereon. The abrasive layer comprises abrasive elements (160) secured to at least a portion of a major surface of the belt backing (110) by at least one binder material. The abrasive elements are disposed at contiguous intersections of horizontal (192) and vertical lines (194) of a rectangular grid pattern. Each abrasive element has at least two triangular abrasive platelets (130), each having respective top and bottom surfaces connected to each other, and separated by, three sidewalls. On a respective basis, one sidewall of the triangular abrasive platelets is disposed facing and proximate to the belt backing A first portion of the abrasive elements is arranged in alternating first rows (16) wherein the triangular abrasive platelets are disposed lengthwise aligned with the vertical lines (194).
    Type: Application
    Filed: November 14, 2019
    Publication date: January 6, 2022
    Inventors: Joseph B. Eckel, Aaron K. Nienaber, Erin D. Spring, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson, Thomas P. Hanschen, Steven J. Keipert
  • Publication number: 20210402567
    Abstract: According to one embodiment, a method of making an abrasive article is disclosed. The method can comprise: disposing a layer of a curable composition into a mold having a circular mold cavity with a central hub, wherein the circular mold cavity has an outer circumference and a rotational axis extending through the central hub, and wherein the curable composition is comprised of at least some magnetizable abrasive particles dispersed therein; and varying a magnetic field relative to the curable composition such that a majority of the magnetizable abrasive particles are at least one of oriented and aligned in a non-random manner relative to a surface of the mold; and at least partially curing the curable composition to provide the bonded abrasive article.
    Type: Application
    Filed: September 8, 2021
    Publication date: December 30, 2021
    Inventors: Ronald D. Jesme, Thomas J. Nelson, Joseph B. Eckel, Aaron K. Nienaber, Vincent R. Jansen, Samad Javid
  • Publication number: 20210388250
    Abstract: Various embodiments disclosed relate to a shaped abrasive particle. The shaped abrasive particle includes at least four major faces and at least six edges joining the four major faces. One of the at least four major faces is a first rake face, a second of the at least four major faces is a second rake face. The first and second rake faces are predominantly joined along only one common edge. A dihedral angle between the first rake face and the second rake face is in a range of from about 71 degrees to about 170 degrees.
    Type: Application
    Filed: October 24, 2019
    Publication date: December 16, 2021
    Inventors: Ronald D. Jesme, Joseph B. Eckel, Thomas J. Nelson, Aaron K. Nienaber
  • Publication number: 20210370473
    Abstract: A coated abrasive disc includes an abrasive layer disposed on a major surface of a disc backing. The abrasive layer comprises triangular abrasive platelets secured to a major surface of the disc backing by at least one binder material. The triangular abrasive platelets are outwardly disposed from the major surface at contiguous intersections of horizontal and vertical lines of a rectangular grid pattern, wherein the intersections of the rectangular grid pattern have an areal density defined by C/(LT) where C is a unitless coverage factor having a value between 0.1 and 0.4, L is the average major triangular abrasive platelet side length and T is the average triangular abrasive platelet thickness. At least 70 percent of the intersections have a triangular abrasive platelet disposed thereat.
    Type: Application
    Filed: November 16, 2018
    Publication date: December 2, 2021
    Inventors: Thomas P. Hanschen, Steven J. Keipert, Joseph B. Eckel, Aaron K. Nienaber, Brant A. Moegenburg, Eric M. Moore, Thomas J. Nelson
  • Publication number: 20210332277
    Abstract: According to one embodiment, a method can comprise: providing a tool that has a first portion that comprises a first material and a second portion that comprises a second material, wherein the second material differs from the first material and the tool is subject to a magnetic field, and wherein the first material and the second material are provided such that the magnetic field is relatively stronger at and adjacent the first portion relative to the magnetic field at and adjacent the second portion; positioning a surface adjacent to the tool so as to be subject to the magnetic field; and disposing magnetizable abrasive particles on the surface, wherein the magnetizable abrasive particles are attracted to an area on the surface adjacent the first portion where the magnetic field is relatively stronger so as to provide for at least one of a desired orientation, placement and alignment of a majority of the magnetizable abrasive particles on the surface.
    Type: Application
    Filed: January 10, 2018
    Publication date: October 28, 2021
    Inventors: Aaron K. Nienaber, Joseph B. Eckel, Thomas J. Nelson, Brian D. Goers, Samad Javid, Ronald D. Jesme, Badri Veeraraghavan, Sheryl A. Vanasse
  • Patent number: 11141835
    Abstract: According to one embodiment, a method of making an abrasive article is disclosed. The method can comprise: providing a surface; disposing magnetizable abrasive particles on the surface; and varying a magnetic field relative to the magnetizable abrasive particles to impart a non-random orientation and/or alignment to the magnetizable abrasive particles relative to the surface.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: October 12, 2021
    Assignee: 3M Innovative Properties Company
    Inventors: Ronald D. Jesme, Thomas J. Nelson, Joseph B. Eckel, Aaron K. Nienaber, Vincent R. Jansen, Samad Javid
  • Publication number: 20210294002
    Abstract: According to one embodiment, a method of making an optical film for control of light comprising: positioning a first mixture on a substrate, wherein the first mixture comprises a first plurality of magnetizable particles dispersed in a first resin, assembling the first plurality of magnetizable particles into a desired structure for the control of the light by rotating modulation of at least a first magnetic field relative to the first plurality of magnetizable particles, and vitrifying the first resin while the first plurality of magnetizable particles are in the desired structure.
    Type: Application
    Filed: July 18, 2019
    Publication date: September 23, 2021
    Inventors: Mark B. O'Neill, Gary E. Gaides, Tri D. Pham, Aaron K. Nienaber, Ronald D. Jesme, Joseph B. Eckel, Shawn C. Dodds, Bert T. Chien
  • Publication number: 20210283749
    Abstract: Abrasive articles including a nonwoven fibrous substrate having a plurality of fibers, and a multiplicity of shaped abrasive particles, each shaped abrasive particle adhered to a corresponding fiber, each shaped abrasive particle having a length (L) and a width (W) determined in a direction substantially orthogonal to the length, the ratio of the length to the width defining an aspect ratio (L/W) of at least 1.1, each abrasive particle is oriented relative to its corresponding fiber, and more than 50% of the abrasive particles are oriented with respect to their corresponding fiber such that the abrasive particle length extends generally outwardly away from a surface of the corresponding fiber as determined visually using the Orientation Test. The shaped abrasive particles may have the geometric shape of a polygonal prism having two faces and at least three sides thereon. Methods of making the abrasive articles are also disclosed.
    Type: Application
    Filed: September 18, 2017
    Publication date: September 16, 2021
    Inventors: Aaron K. Nienaber, Grayce T. Huberty, Thomas J. Nelson, Ronald D. Apple, Louis S. Moren, Robinette S. Alkhas, Nathan E. Schultz, Tien T. Wu, Gerry A. Hoffdahl
  • Publication number: 20210273126
    Abstract: According to one embodiment, a solar device, comprises one or more photovoltaic cells disposed in an encapsulant and a light control structure including a louver film having a series of louver structures, wherein each louver structure includes one or more groupings of a plurality magnetizable particles aligned at least in a first orientation dispersed in a binding matrix. The light control structure substantially transmits light incident at a first angle and substantially limits transmission of light incident at a second angle. Each louver structure is spaced apart from an adjacent louver structure, wherein each louver structure is substantially aligned in a plane substantially parallel to an adjacent louver structure.
    Type: Application
    Filed: July 18, 2019
    Publication date: September 2, 2021
    Inventors: Mark B. O'Neill, Gary E. Gaides, Joseph B. Eckel, Aaron K. Nienaber, Ronald D. Jesme, Mark D. Weigel