Patents by Inventor Aihua Chen

Aihua Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030138562
    Abstract: An oxide and an oxynitride films and their methods of fabrication are described. The oxide or the oxynitride film is grown on a substrate that is placed in a deposition chamber. A silicon source gas (or a silicon source gas with a nitridation source gas) and an oxidation source gas are decomposed in the deposition chamber using a thermal energy source. A silicon oxide (or an oxynitride) film is formed above the substrate wherein total pressure for the deposition chamber is maintained in the range of 50 Torr to 350 Torr and wherein a flow ratio for the silicon source gas (or the silicon source gas with the nitridiation source gas) and the oxidation source gas is in the range of 1:50 to 1:10000 during a deposition process.
    Type: Application
    Filed: December 28, 2001
    Publication date: July 24, 2003
    Inventors: Janardhanan Anand Subramony, Yoshitaka Yokota, Ramaseshan Suryanarayanan Iyer, Lee Luo, Aihua Chen
  • Publication number: 20030059535
    Abstract: A method for film deposition that includes, flowing a first reactive gas over a top surface of a wafer in a cold wall single wafer process chamber to form a first half-layer of the film on the wafer, stopping the flow of the first reactive gas, removing residual first reactive gas from the cold wall single wafer process chamber, flowing a second reactive gas over the first half-layer to form a second half-layer of the film where deposition of the second half-layer is non self-limiting, controlling a thickness of the second half-layer by regulating process parameters within the cold wall single wafer process chamber, stopping the flow of the second reactive gas; and removing residual second reactive gas from the cold wall single wafer process chamber.
    Type: Application
    Filed: September 25, 2001
    Publication date: March 27, 2003
    Inventors: Lee Luo, Sang Hoon Ahn, Aihua Chen, Ramaseshan Suryanarayanan Iyer, Shulin Wang, Randhir P. Singh Thakur
  • Patent number: 6500266
    Abstract: An apparatus of a reactor or processing chamber comprising a chamber having a resistive heater disposed within a volume of the chamber, including a stage having a surface area to support a substrate such as a wafer and a body including at least one heating element, a shaft coupled to the body, a plurality of temperature sensors coupled to the chamber, each configured to measure a temperature at separate points associated with the surface area of the stage, and a motor coupled to the shaft and configured to rotate the resistive heater about an axis through the shaft. In this manner, the temperature sensors may measure a temperature at separate points of the surface area of the stage. A method of rotating a shaft and measuring a plurality of temperatures over the surface area of the stage or over a wafer seated on the stage with the plurality of temperature sensors.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: December 31, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Henry Ho, Alexander M. Rubinchik, Aihua Chen, Abril C. Cabreros, Steven T. Li, Mark Yam, Bruce W. Peuse
  • Publication number: 20020125239
    Abstract: A heating apparatus including a stage comprising a surface having an area to support a wafer and a body, a shaft coupled to the stage, and a first and a second heating element. The first heating element is disposed within a first plane of the body of the stage. The second heating element is disposed within a second plane of the body of the stage at a greater distance from the surface of the stage than the first heating element. A reactor comprising a chamber, a resistive heater, a first temperature sensor, and a second temperature sensor. A resistive heating system for a chemical vapor deposition apparatus comprising a resistive heater.
    Type: Application
    Filed: October 19, 2001
    Publication date: September 12, 2002
    Inventors: Steven Aihua Chen, Henry Ho, Michael X. Yang, Bruce W. Peuse, Karl Littau, Yu Chang
  • Patent number: 6423949
    Abstract: A heating apparatus including a stage comprising a surface having an area to support a wafer and a body, a shaft coupled to the stage, and a first and a second heating element. The first heating element is disposed within a first plane of the body of the stage. The second heating element is disposed within a second plane of the body of the stage at a greater distance from the surface of the stage than the first heating element. A reactor comprising a chamber, a resistive heater, a first temperature sensor, and a second temperature sensor. A resistive heating system for a chemical vapor deposition apparatus comprising a resistive heater.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: July 23, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Steven Aihua Chen, Henry Ho, Michael X. Yang, Bruce W. Peuse, Karl Littau, Yu Chang
  • Patent number: 6303501
    Abstract: The present invention provides apparatus, systems, and methods related to the manufacture of integrated circuits. Specifically, embodiments of the present invention include apparatus designed to provide thorough and reliable fluid mixture for gases used in a semiconductor processing system. In one embodiment of the invention, the gas mixing apparatus comprises a gas mixer housing having a gas inlet, a fluid flow channel, and a gas outlet. The fluid flow channel is fluidly coupled to a plurality of gas sources. The majority of the gas mixture occurs in the fluid flow channel which comprises one or more fluid separators for separating the gas into two or more gas portions and one or more fluid collectors for allowing the gas portions to collide with each other to mix the gas portions. This separation and collection of the gas portions results in a thoroughly mixed gas.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: October 16, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Chen-An Chen, Koji Nakanishi, Aihua Chen
  • Patent number: 6231674
    Abstract: This invention provides a method and apparatus for substantially eliminating deposition on the edge of a wafer supported on a pedestal in a processing chamber. Process gas flow onto the wafer surface is inhibited from reaching the wafer edge and backside, by means of a shadow ring placed over the wafer without touching it. Deposition on the edge and backside of the wafer are therefore substantially eliminated. The shadow ring defines a cavity which circumscribes the wafer edge, into which purge gas is flowed. This purge gas flows out from the cavity through the gap between the shadow ring and the upper surface of the wafer. Alignment pins are placed on the wafer supporting surface of the pedestal. These pins have sloping surfaces and are arranged to guide the wafer to a centered position on the pedestal when the wafer is placed on the pedestal. These pins also serve to align the shadow ring to the pedestal and thence to the wafer.
    Type: Grant
    Filed: January 11, 2000
    Date of Patent: May 15, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Karl A. Littau, Dashun S. Zhou
  • Patent number: 6143084
    Abstract: An apparatus comprising a semiconductor processing chamber, a plasma generator, and a pipe connecting a semiconductor processing chamber and the plasma generator. The plasma generator includes a generation chamber, a radio frequency generator which generates an ion plasma within the generation chamber, and a magnetic device which confines the plasma primarily within a center region of the generation chamber.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: November 7, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Steven T. Li, Andrew J. Ruspini, Henry Ho, Yu Chang, Aihua Chen, Binh Bui
  • Patent number: 6068703
    Abstract: The present invention provides apparatus, systems, and methods related to the manufacture of integrated circuits. Specifically, embodiments of the present invention include apparatus designed to provide thorough and reliable fluid mixture for gases used in a semiconductor processing system. In one embodiment of the invention, the gas mixing apparatus comprises a gas mixer housing having a gas inlet, a fluid flow channel, and a gas outlet. The fluid flow channel is fluidly coupled to a plurality of gas sources. The majority of the gas mixture occurs in the fluid flow channel which comprises one or more fluid separators for separating the gas into two or more gas portions and one or more fluid collectors for allowing the gas portions to collide with each other to mix the gas portions. This separation and collection of the gas portions results in a thoroughly mixed gas.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: May 30, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Chen-An Chen, Koji Nakanishi, Aihua Chen
  • Patent number: 6066836
    Abstract: A resistive heating structure for a processing apparatus such as a chemical vapor deposition chamber. The system includes a resistive heating substrate holder including a support surface and a support shaft, the holder being comprised of a first material. The support surface includes a resistive heating element. The support shaft has a given length, and through bores for allowing a thermocouple to engage the support surface and electrical conductors to couple to the resistive heating element in the support surface. A metallic mounting structure is coupled to the support shaft and secured to the process apparatus to create a sealed environment within the holder and mounting structure to protect the electrical leads and thermocouple from the process environment.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: May 23, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Steven Aihua Chen, Henry Ho, Mei Chang, Ming Xi, Chen-An Chen, Chiliang Chen
  • Patent number: 6033480
    Abstract: This invention provides a method and apparatus for substantially eliminating deposition on the edge of a wafer supported on a pedestal in a processing chamber. Process gas flow onto the wafer surface is inhibited from reaching the wafer edge and backside, by means of a shadow ring placed over the wafer without touching it. Deposition on the edge and backside of the wafer are therefore substantially eliminated. The shadow ring defines a cavity which circumscribes the wafer edge, into which purge gas is flowed. This purge gas flows out from the cavity through the gap between the shadow ring and the upper surface of the wafer. Alignment pins are placed on the wafer supporting surface of the pedestal. These pins have sloping surfaces and are arranged to guide the wafer to a centered position on the pedestal when the wafer is placed on the pedestal. These pins also serve to align the shadow ring to the pedestal and thence to the wafer.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: March 7, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Karl A. Littau, Dashun S. Zhou
  • Patent number: 5908334
    Abstract: In accordance with the present invention, two types of polymeric dielectric systems useful in construction of a high-temperature electrostatic chuck are disclosed. Further, a high temperature power connection for transmitting power from a supply source to a conductive extension from the electrostatic chuck conductive layer is described. The first polymeric dielectric system provides for the use of polyimide films which do not require an adhesive to adhere to an underlying substrate support platen. The self-adhering polyimide film comprises from one to three layers of polyimide material, wherein at least one outer layer of polyimide material is thermoplastic in nature, for the purpose of adhesion and/or encapsulation. When the film comprises two layers, one of the layers is a non-thermoplastic polyimide having an increased glass transition temperature of about 350.degree. C. or greater.
    Type: Grant
    Filed: June 24, 1997
    Date of Patent: June 1, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Vijay Parkhe, Sergio Edelstein
  • Patent number: 5906683
    Abstract: A method and apparatus for controlling the temperature, maintaining the vacuum integrity and facilitating maintenance of a lid assembly (2) in a wafer processing apparatus. The apparatus comprises a gas distribution plate (42) defining one or more gas distribution holes (50) formed therethrough for passage of process gas(es), and a base plate (10) thermally coupled to the gas distribution plate. The base plate (10) has a gas inlet in communication with the gas distribution holes, a fluid inlet (98) for receiving a coolant fluid and a fluid outlet (102) for discharging the coolant fluid. A fluid passage (94) is formed through portions of the base plate in communication with the fluid inlet and outlet to allow a coolant fluid to flow therethrough and to transfer heat from the gas injection and distribution plates. The base plate is an integral, single piece that minimizes the use of gas seals in the lid assembly and facilitates disassembly and assembly of the lid assembly for cleaning and other maintenance.
    Type: Grant
    Filed: April 16, 1996
    Date of Patent: May 25, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Salvador P. Umotoy
  • Patent number: 5868847
    Abstract: A chamber for depositing a film layer on a substrate includes a support member on which the substrate is positioned for processing in the chamber, and a clamp ring suspended in the chamber on a chamber shield. The support member is positionable in the chamber to receive a substrate thereon, and further positionable to pass the substrate through the shield and thereby lift the clamp ring off the shield. After deposition is complete, the support member retracts through the shield, to reposition the clamp on the shield. In the event that a deposition material layer has formed between the substrate and the clamp ring, the clamp ring includes a plurality of actuators thereon which force the substrate out of the clamp ring as the clamp ring is repositioned on the shield.
    Type: Grant
    Filed: December 16, 1994
    Date of Patent: February 9, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Zheng Xu, Howard Grunes, Avi Tepman, Igor Kogan
  • Patent number: 5849092
    Abstract: A method for removing particles and residue that build up inside a substrate processing system during a substrate processing operation, without overetching system components, is described. One method includes the steps of: flowing an etchant gas comprising chlorine trifluoride (CIF.sub.3), diluted with an inert carrier gas, into a processing chamber after completion of the substrate processing operation. The parts of the system within the chamber with the greatest amount of build-up are preferentially heated to facilitate more extensive cleaning of those parts. Parts of the system within the chamber with less build up are protected from overetching by keeping them about 200.degree. C. cooler than the heavily-deposited parts. Heating the heavily-deposited chamber parts to a temperature of at least about 400.degree. C. allows using a lower concentration of etchant gas for the cleaning process than a lower temperature process would allow.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: December 15, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Kazuhiro Nishina, Steve (Aihua) Chen, Toshiaki Fujita
  • Patent number: 5837058
    Abstract: A susceptor with improved resistance to thermal cycling and chemical attack between processing and cleaning cycles. The susceptor comprises a top surface is surrounded by a lip, the lip having a beveled inner side, a top side, an outer side, a first rounded edge between the top side and the outer side, a second rounded edge between the top side and the inner side, and a third rounded edge between the inner side and the top surface. The susceptor comprises a body of graphite covered by a coating of aluminum nitride.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: November 17, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Steven Aihua Chen, Ming Xi, Ruiping Wang
  • Patent number: 5763851
    Abstract: A coil shield assembly for an RF field coil in a plasma processing system includes a first shield positioned inside the coil. The first shield has a central opening substantially surrounding a central space of a processing chamber in which the plasma is maintained. At least one slot is formed in the first shield and extends therethrough. A barrier is positioned between the first shield and the coil and spaced apart from the first shield near the at least one slot. The slot permits an RF signal from the coil to couple with the plasma, and the first shield and the barrier are structured and arranged to prevent plasma ions or sputtered material from bombarding the coil by a direct path from the central space and through the at least one slot.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: June 9, 1998
    Assignee: Applied Materials, Inc.
    Inventors: John Forster, Aihua Chen, Howard Grunes, Robert B. Lowrance, Ralf Hofmann, Zheng Xu, Fernand Dorleans
  • Patent number: 5759287
    Abstract: A method for purging and passivating a vacuum chamber suitable for use in the production of integrated circuit structures on semiconductor wafers. The method includes flowing a heated, non-reactive gas, such as argon gas, through the chamber for purposes of decontaminating the chamber and subsequently filling the chamber with a selected gas such as nitrogen to passivate the chamber for storage or shipping purposes.
    Type: Grant
    Filed: June 21, 1996
    Date of Patent: June 2, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Robert A. Chapman
  • Patent number: 5691876
    Abstract: In accordance with the present invention, two types of polymeric dielectric systems useful in construction of a high-temperature electrostatic chuck are disclosed. Further, a high temperature power connection for transmitting power from a supply source to a conductive extension from the electrostatic chuck conductive layer is described. The first polymeric dielectric system provides for the use of polyimide films which do not require an adhesive to adhere to an underlying substrate support platen. The self-adhering polyimide film comprises from one to three layers of polyimide material, wherein at least one outer layer of polyimide material is thermoplastic in nature, for the purpose of adhesion and/or encapsulation. When the film comprises two layers, one of the layers is a non-thermoplastic polyimide having an increased glass transition temperature of about 350.degree. C. or greater.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: November 25, 1997
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Vijay Parkhe, Sergio Edelstein
  • Patent number: 5536330
    Abstract: A method for purging a vacuum chamber suitable for use in the production of integrated circuit structures on semiconductor wafers. The method comprises providing the chamber to be purged and flowing a heated, non-reactive gas, such as argon gas, through the chamber. The non-reactive gas is heated to a temperature of at least 90.degree. C. Further, the chamber is heated to maintain it at a temperature of at least 90.degree. C. while flowing the gas therethrough. Flowing the heated non-reactive gas through the chamber causes released impurities or contaminants to be efficiently swept from the chamber in the non-reactive gas flow. After flowing the heated gas through the heated chamber, the flow of gas is interrupted and the chamber, while still hot, is pumped down to a vacuum of about 5.times.10.sup.-7 to determine whether or not the chamber has a leakage problem.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: July 16, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Aihua Chen, Robert A. Chapman