Patents by Inventor Aihua Chen

Aihua Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7429516
    Abstract: In one embodiment, a method for forming a tungsten barrier material on a substrate is provided which includes depositing a tungsten layer on a substrate during a vapor deposition process and exposing the substrate sequentially to a tungsten precursor and a nitrogen precursor to form a tungsten nitride layer on the tungsten layer. Some examples provide that the tungsten layer may be deposited by sequentially exposing the substrate to the tungsten precursor and a reducing gas (e.g., diborane or silane) during an atomic layer deposition process. The tungsten layer may have a thickness of about 50 ? or less and tungsten nitride layer may have an electrical resistivity of about 380 ??-cm or less. Other examples provide that a tungsten bulk layer may be deposited on the tungsten nitride layer by a chemical vapor deposition process.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: September 30, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ulrich Kroemer, Lee Luo, Aihua Chen, Ming Li
  • Publication number: 20080092815
    Abstract: A semiconductor work piece processing reactor is described and which includes a processing chamber defining a deposition region; a pedestal which supports and moves a semiconductor work piece to be processed within the deposition region of the processing chamber; and a gas distribution assembly mounted within the processing chamber and which defines first and second reactive gas passageways which are separated from each other, and which deliver two reactant gases to a semiconductor work piece which is positioned near the gas distribution assembly.
    Type: Application
    Filed: November 20, 2006
    Publication date: April 24, 2008
    Inventors: AiHua Chen, Shulin Wang, Henry Ho, Gerald Yin, Qing Lv, Li Fu
  • Patent number: 7335266
    Abstract: Method of forming a lightly phosphorous doped silicon film. A substrate is provided. A process gas comprising a phosphorous source gas and a disilane gas is used to form a lightly phosphorous doped silicon film on the substrate. The diluted phosphorous source gas has a phosphorous concentration of 1%. The phosphorous source gas and the disilane gas have a flow ratio less than 1:100. The lightly phosphorous doped silicon film has a phosphorous doping concentration less than 1×1020 atoms/cm3.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: February 26, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Li Fu, Sheeba J. Panayil, Shulin Wang, Christopher G. Quentin, Lee Luo, Aihua Chen, Xianzhi Tao
  • Publication number: 20070032097
    Abstract: A processing apparatus for semiconductor work pieces and related methodology is disclosed and which includes a processing chamber having an internal cavity, and which has a plurality of rotatable processing stations positioned therein and wherein the rotatable processing stations each process a semiconductor work piece.
    Type: Application
    Filed: May 24, 2006
    Publication date: February 8, 2007
    Inventors: AiHua Chen, Ryoji Todaka, Gerald Yin
  • Publication number: 20070031236
    Abstract: A semiconductor processing system and related methodology is disclosed and which includes a processing chamber having an internal cavity and a transfer port; a transfer chamber which is positioned adjacent to the processing chamber; and a transfer apparatus having at least two extendible arms which are positioned within the transfer chamber, and wherein each of the extendible arms carry a semiconductor work piece into and out of the processing chamber by way of the transfer port, and wherein the at least two extendible arms are selectively vertically moveable, and further are each selectively moveable in the direction of the transfer port.
    Type: Application
    Filed: May 24, 2006
    Publication date: February 8, 2007
    Inventor: AiHua Chen
  • Patent number: 7172792
    Abstract: A method of forming a silicon nitride film is described. According to the present invention, a silicon nitride film is deposited by thermally decomposing a silicon/nitrogen containing source gas or a silicon containing source gas and a nitrogen containing source gas at low deposition temperatures (e.g., less than 550° C.) to form a silicon nitride film. The thermally deposited silicon nitride film is then treated with hydrogen radicals to form a treated silicon nitride film.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: February 6, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Errol Antonio C. Sanchez, Aihua Chen
  • Publication number: 20070020924
    Abstract: In one embodiment, a method for forming a tungsten barrier material on a substrate is provided which includes depositing a tungsten layer on a substrate during a vapor deposition process and exposing the substrate sequentially to a tungsten precursor and a nitrogen precursor to form a tungsten nitride layer on the tungsten layer. Some examples provide that the tungsten layer may be deposited by sequentially exposing the substrate to the tungsten precursor and a reducing gas (e.g., diborane or silane) during an atomic layer deposition process. The tungsten layer may have a thickness of about 50 ? or less and tungsten nitride layer may have an electrical resistivity of about 380 ??-cm or less. Other examples provide that a tungsten bulk layer may be deposited on the tungsten nitride layer by a chemical vapor deposition process.
    Type: Application
    Filed: September 15, 2006
    Publication date: January 25, 2007
    Inventors: Shulin Wang, Ulrich Kroemer, Lee Luo, Aihua Chen, Ming Li
  • Patent number: 7115499
    Abstract: A method for depositing a tungsten nitride layer is provided. The method includes a cyclical process of alternately adsorbing a tungsten-containing compound and a nitrogen-containing compound on a substrate. The barrier layer has a reduced resistivity, lower concentration of fluorine, and can be deposited at any desired thickness, such as less than 100 angstroms, to minimize the amount of barrier layer material.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: October 3, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ulrich Kroemer, Lee Luo, Aihua Chen, Ming Li
  • Publication number: 20060024926
    Abstract: Method of forming a lightly phosphorous doped silicon film. A substrate is provided. A process gas comprising a phosphorous source gas and a disilane gas is used to form a lightly phosphorous doped silicon film on the substrate. The diluted phosphorous source gas has a phosphorous concentration of 1%. The phosphorous source gas and the disilane gas have a flow ratio less than 1:100. The lightly phosphorous doped silicon film has a phosphorous doping concentration less than 1×1020 atoms/cm3.
    Type: Application
    Filed: September 16, 2005
    Publication date: February 2, 2006
    Inventors: Li Fu, Sheeba Panayil, Shulin Wang, Christopher Quentin, Lee Luo, Aihua Chen, Zianzhi Tao
  • Patent number: 6982214
    Abstract: Method of forming a lightly phosphorous doped silicon film. A substrate is provided. A process gas comprising a phosphorous source gas and a disilane gas is used to form a lightly phosphorous doped silicon film on the substrate. The diluted phosphorous source gas has a phosphorous concentration of 1%. The phosphorous source gas and the disilane gas have a flow ratio less than 1:100. The lightly phosphorous doped silicon film has a phosphorous doping concentration less than 1×1020 atoms/cm3.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: January 3, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Li Fu, Sheeba J. Panayil, Shulin Wang, Christopher G. Quentin, Lee Luo, Aihua Chen, Xianzhi Tao
  • Publication number: 20050176240
    Abstract: A method for depositing a tungsten nitride layer is provided. The method includes a cyclical process of alternately adsorbing a tungsten-containing compound and a nitrogen-containing compound on a substrate. The barrier layer has a reduced resistivity, lower concentration of fluorine, and can be deposited at any desired thickness, such as less than 100 angstroms, to minimize the amount of barrier layer material.
    Type: Application
    Filed: December 1, 2004
    Publication date: August 11, 2005
    Inventors: Shulin Wang, Ulrich Kroemer, Lee Luo, Aihua Chen, Ming Li
  • Patent number: 6884464
    Abstract: A silicon comprising film and its method of fabrication is described. The silicon comprising film is grown on a substrate. A hexachlorodisilane (HCD) source gas is one of the reactant species used to form the silicon comprising film. The silicon comprising film is formed under a pressure between 10 Torr and 350 Torr.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: April 26, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Lee Luo, R. Suryanarayanan Iyer, Janardhanan Anand Subramony, Errol Antonio C. Sanchez, Xiaoliang Jin, Aihua Chen, Chang-Lian Yan, Nobuo Tokai, Yuji Maeda, Randhir P. Singh Thakur
  • Publication number: 20040266123
    Abstract: One embodiment of the present invention is a method for treating silicon nitride (SixNy) films that includes electron beam treating the silicon nitride film.
    Type: Application
    Filed: April 13, 2004
    Publication date: December 30, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Zhenjiang Cui, Jun Zhao, Rick J. Roberts, Shulin Wang, Errol A. C. Sanchez, Aihua Chen
  • Patent number: 6833161
    Abstract: A method for depositing a tungsten nitride layer is provided. The method includes a cyclical process of alternately adsorbing a tungsten-containing compound and a nitrogen-containing compound on a substrate. The barrier layer has a reduced resistivity, lower concentration of fluorine, and can be deposited at any desired thickness, such as less than 100 angstroms, to minimize the amount of barrier layer material.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: December 21, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Shulin Wang, Ulrich Kroemer, Lee Luo, Aihua Chen, Ming Li
  • Publication number: 20040194706
    Abstract: A method of forming a silicon nitride layer is described. According to the present invention, a silicon nitride layer is deposited by thermally decomposing a silicon/nitrogen containing source gas or a silicon containing source gas and a nitrogen containing source gas at low deposition temperatures (e.g., less than 550° C.) to form a silicon nitride layer. The thermally deposited silicon nitride layer is then treated with hydrogen radicals to form a treated silicon nitride layer.
    Type: Application
    Filed: December 19, 2003
    Publication date: October 7, 2004
    Inventors: Shulin Wang, Errol Antonio C. Sanchez, Aihua Chen
  • Publication number: 20040121085
    Abstract: A method of forming a silicon nitride film is described. According to the present invention, a silicon nitride film is deposited by thermally decomposing a silicon/nitrogen containing source gas or a silicon containing source gas and a nitrogen containing source gas at low deposition temperatures (e.g., less than 550° C.) to form a silicon nitride film. The thermally deposited silicon nitride film is then treated with hydrogen radicals to form a treated silicon nitride film.
    Type: Application
    Filed: December 20, 2002
    Publication date: June 24, 2004
    Inventors: Shulin Wang, Errol Antonio C. Sanchez, Aihua Chen
  • Publication number: 20040063301
    Abstract: Method of forming a lightly phosphorous doped silicon film. A substrate is provided. A process gas comprising a phosphorous source gas and a disilane gas is used to form a lightly phosphorous doped silicon film on the substrate. The diluted phosphorous source gas has a phosphorous concentration of 1%. The phosphorous source gas and the disilane gas have a flow ratio less than 1:100. The lightly phosphorous doped silicon film has a phosphorous doping concentration less than 1×1020 atoms/cm3.
    Type: Application
    Filed: October 1, 2002
    Publication date: April 1, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Li Fu, Sheeba J. Panayil, Shulin Wang, Christopher G. Quentin, Lee Luo, Aihua Chen, Xianzhi Tao
  • Patent number: 6713127
    Abstract: An oxide and an oxynitride films and their methods of fabrication are described. The oxide or the oxynitride film is grown on a substrate that is placed in a deposition chamber. A silicon source gas (or a silicon source gas with a nitridation source gas) and an oxidation source gas are decomposed in the deposition chamber using a thermal energy source. A silicon oxide (or an oxynitride) film is formed above the substrate wherein total pressure for the deposition chamber is maintained in the range of 50 Torr to 350 Torr and wherein a flow ratio for the silicon source gas (or the silicon source gas with the nitridiation source gas) and the oxidation source gas is in the range of 1:50 to 1:10000 during a deposition process.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: March 30, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Janardhanan Anand Subramony, Yoshitaka Yokota, Ramaseshan Suryanarayanan Iyer, Lee Luo, Aihua Chen
  • Patent number: 6646235
    Abstract: A heating apparatus including a stage comprising a surface having an area to support a wafer and a body, a shaft coupled to the stage, and a first and a second heating element. The first heating element is disposed within a first plane of the body of the stage. The second heating element is disposed within a second plane of the body of the stage at a greater distance from the surface of the stage than the first heating element. A reactor comprising a chamber, a resistive heater, a first temperature sensor, and a second temperature sensor. A resistive heating system for a chemical vapor deposition apparatus comprising a resistive heater.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: November 11, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Steven Aihua Chen, Henry Ho, Michael X. Yang, Bruce W. Peuse, Karl Littau, Yu Chang
  • Publication number: 20030161952
    Abstract: A method for depositing a tungsten nitride layer is provided. The method includes a cyclical process of alternately adsorbing a tungsten-containing compound and a nitrogen-containing compound on a substrate. The barrier layer has a reduced resistivity, lower concentration of fluorine, and can be deposited at any desired thickness, such as less than 100 angstroms, to minimize the amount of barrier layer material.
    Type: Application
    Filed: February 26, 2002
    Publication date: August 28, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Shulin Wang, Ulrich Kroemer, Lee Luo, Aihua Chen, Ming Li