Patents by Inventor Akif Sultan

Akif Sultan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9269710
    Abstract: Apparatus for semiconductor device structures and related fabrication methods are provided. A method for fabricating a semiconductor device structure on an isolated region of semiconductor material comprises forming a plurality of gate structures overlying the isolated region of semiconductor material and masking edge portions of the isolated region of semiconductor material. While the edge portions are masked, the fabrication method continues by forming recesses between gate structures of the plurality of gate structures and forming stressor regions in the recesses. The method continues by unmasking the edge portions and implanting ions of a conductivity-determining impurity type into the stressor regions and the edge portions.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 23, 2016
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Akif Sultan, Indradeep Sen
  • Patent number: 8779529
    Abstract: A semiconductor device is formed with low resistivity self aligned silicide contacts with high-K/metal gates. Embodiments include postponing silicidation of a metal layer on source/drain regions in a silicon substrate until deposition of a high-K dielectric, thereby preserving the physical and morphological properties of the silicide film and improving device performance. An embodiment includes forming a replaceable gate electrode on a silicon-containing substrate, forming source/drain regions, forming a metal layer on the source/drain regions, forming an ILD over the metal layer on the substrate, removing the replaceable gate electrode, thereby forming a cavity, depositing a high-K dielectric layer in the cavity at a temperature sufficient to initiate a silicidation reaction between the metal layer and underlying silicon, and forming a metal gate electrode on the high-K dielectric layer.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: July 15, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Indradeep Sen, Thorsten Kammler, Andreas Knorr, Akif Sultan
  • Patent number: 8687417
    Abstract: A first bias charge is provided to first bias region at a first level of an electronic device, the first bias region directly underlying a first transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the first transistor is based upon the first bias charge. A second bias charge is provided to second bias region at the first level of an electronic device, the second bias region directly underlying a second transistor having a channel region at a second level that is electrically isolated from the first bias region. A voltage threshold of the second transistor is based upon the second bias charge.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: April 1, 2014
    Inventors: Ruigang Li, Jingrong Zhou, David Donggang Wu, Zhonghai Shi, James F. Buller, Akif Sultan, Fred Hause, Donna Michael
  • Patent number: 8497179
    Abstract: A method of fabricating p-type metal oxide semiconductor (PMOS) transistor devices on a common substrate is presented. The method provides a first portion of semiconductor material and a second portion of semiconductor material on the common substrate. The first portion of semiconductor material and the second portion of semiconductor material are insulated from each other. The method continues by creating first PMOS transistor devices using the first portion of semiconductor material. The first PMOS transistor devices include stressor regions that impart compressive stress to channel regions of the first PMOS transistor devices. The method also creates second PMOS transistor devices using the second portion of semiconductor material. The second PMOS transistor devices do not include channel stressor regions.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: July 30, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventor: Akif Sultan
  • Patent number: 8426278
    Abstract: Apparatus for semiconductor device structures and related fabrication methods are provided. A method for fabricating a semiconductor device structure on an isolated region of semiconductor material comprises forming a plurality of gate structures overlying the isolated region of semiconductor material and masking edge portions of the isolated region of semiconductor material. While the edge portions are masked, the fabrication method continues by forming recesses between gate structures of the plurality of gate structures and forming stressor regions in the recesses. The method continues by unmasking the edge portions and implanting ions of a conductivity-determining impurity type into the stressor regions and the edge portions.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: April 23, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Akif Sultan, Indradeep Sen
  • Publication number: 20130092957
    Abstract: A semiconductor device is formed with low resistivity self aligned silicide contacts with high-K/metal gates. Embodiments include postponing silicidation of a metal layer on source/drain regions in a silicon substrate until deposition of a high-K dielectric, thereby preserving the physical and morphological properties of the silicide film and improving device performance. An embodiment includes forming a replaceable gate electrode on a silicon-containing substrate, forming source/drain regions, forming a metal layer on the source/drain regions, forming an ILD over the metal layer on the substrate, removing the replaceable gate electrode, thereby forming a cavity, depositing a high-K dielectric layer in the cavity at a temperature sufficient to initiate a silicidation reaction between the metal layer and underlying silicon, and forming a metal gate electrode on the high-K dielectric layer.
    Type: Application
    Filed: December 3, 2012
    Publication date: April 18, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Indradeep SEN, Thorsten KAMMLER, Andreas KNORR, Akif SULTAN
  • Patent number: 8377781
    Abstract: The present invention is directed to a transistor with an asymmetric silicon germanium source region, and various methods of making same. In one illustrative embodiment, the transistor includes a gate electrode formed above a semiconducting substrate comprised of silicon, a doped source region comprising a region of epitaxially grown silicon that is doped with germanium formed in the semiconducting substrate and a doped drain region formed in the semiconducting substrate.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: February 19, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jian Chen, James F. Buller, Akif Sultan
  • Patent number: 8361870
    Abstract: A semiconductor device is formed with low resistivity self aligned silicide contacts with high-K/metal gates. Embodiments include postponing silicidation of a metal layer on source/drain regions in a silicon substrate until deposition of a high-K dielectric, thereby preserving the physical and morphological properties of the silicide film and improving device performance. An embodiment includes forming a replaceable gate electrode on a silicon-containing substrate, forming source/drain regions, forming a metal layer on the source/drain regions, forming an ILD over the metal layer on the substrate, removing the replaceable gate electrode, thereby forming a cavity, depositing a high-K dielectric layer in the cavity at a temperature sufficient to initiate a silicidation reaction between the metal layer and underlying silicon, and forming a metal gate electrode on the high-K dielectric layer.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: January 29, 2013
    Assignee: Globalfoundries Inc.
    Inventors: Indradeep Sen, Thorsten Kammler, Andreas Knorr, Akif Sultan
  • Publication number: 20120018816
    Abstract: A semiconductor device is formed with low resistivity self aligned silicide contacts with high-K/metal gates. Embodiments include postponing silicidation of a metal layer on source/drain regions in a silicon substrate until deposition of a high-K dielectric, thereby preserving the physical and morphological properties of the silicide film and improving device performance. An embodiment includes forming a replaceable gate electrode on a silicon-containing substrate, forming source/drain regions, forming a metal layer on the source/drain regions, forming an ILD over the metal layer on the substrate, removing the replaceable gate electrode, thereby forming a cavity, depositing a high-K dielectric layer in the cavity at a temperature sufficient to initiate a silicidation reaction between the metal layer and underlying silicon, and forming a metal gate electrode on the high-K dielectric layer.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 26, 2012
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Indradeep Sen, Thorsten Kammler, Andreas Knorr, Akif Sultan
  • Publication number: 20120003802
    Abstract: The present invention is directed to a transistor with an asymmetric silicon germanium source region, and various methods of making same. In one illustrative embodiment, the transistor includes a gate electrode formed above a semiconducting substrate comprised of silicon, a doped source region comprising a region of epitaxially grown silicon that is doped with germanium formed in the semiconducting substrate and a doped drain region formed in the semiconducting substrate.
    Type: Application
    Filed: September 12, 2011
    Publication date: January 5, 2012
    Inventors: Jian Chen, James F. Buller, Akif Sultan
  • Publication number: 20110303980
    Abstract: Apparatus for semiconductor device structures and related fabrication methods are provided. A method for fabricating a semiconductor device structure on an isolated region of semiconductor material comprises forming a plurality of gate structures overlying the isolated region of semiconductor material and masking edge portions of the isolated region of semiconductor material. While the edge portions are masked, the fabrication method continues by forming recesses between gate structures of the plurality of gate structures and forming stressor regions in the recesses. The method continues by unmasking the edge portions and implanting ions of a conductivity-determining impurity type into the stressor regions and the edge portions.
    Type: Application
    Filed: June 9, 2010
    Publication date: December 15, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Akif SULTAN, Indradeep SEN
  • Patent number: 8076703
    Abstract: A semiconductor device is provided which includes a substrate including an inactive region and an active region, a gate electrode structure having portions overlying the active region, a compressive layer overlying the active region, and a tensile layer overlying the inactive region and located outside the active region. The active region has a lateral edge which defines a width of the active region, and a transverse edge which defines a length of the active region. The gate electrode structure includes: a common portion spaced apart from the active region; a plurality of gate electrode finger portions integral with the common portion, and a plurality of fillet portions integral with the common portion and the gate electrode finger portions. A portion of each gate electrode finger portion overlies the active region. The fillet portions are disposed between the common portion and the gate electrode finger portions, and do not overlie the active region.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: December 13, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Akif Sultan, James F. Buller, Kaveri Mathur
  • Patent number: 8035098
    Abstract: The present invention is directed to a transistor with an asymmetric silicon germanium source region, and various methods of making same. In one illustrative embodiment, the transistor includes a gate electrode formed above a semiconducting substrate comprised of silicon, a doped source region comprising a region of epitaxially grown silicon that is doped with germanium formed in the semiconducting substrate and a doped drain region formed in the semiconducting substrate.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: October 11, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jian Chen, James F. Buller, Akif Sultan
  • Publication number: 20110171801
    Abstract: A method of fabricating p-type metal oxide semiconductor (PMOS) transistor devices on a common substrate is presented. The method provides a first portion of semiconductor material and a second portion of semiconductor material on the common substrate. The first portion of semiconductor material and the second portion of semiconductor material are insulated from each other. The method continues by creating first PMOS transistor devices using the first portion of semiconductor material. The first PMOS transistor devices include stressor regions that impart compressive stress to channel regions of the first PMOS transistor devices. The method also creates second PMOS transistor devices using the second portion of semiconductor material. The second PMOS transistor devices do not include channel stressor regions.
    Type: Application
    Filed: January 8, 2010
    Publication date: July 14, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: Akif SULTAN
  • Patent number: 7793240
    Abstract: A method includes receiving design data associated with an integrated circuit device. The integrated circuit device includes a first element having a corner defined therein and a second element overlapping the first element. A dimension specified for the first element in the design data is adjusted based on a distance between the second element and the corner. The integrated circuit device is simulated based on the adjusted dimension.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 7, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Akif Sultan, Jian Chen, Mark W. Michael, Jingrong R. Zhou
  • Patent number: 7761838
    Abstract: The techniques and technologies described herein relate to the automatic creation of photoresist masks for stress liners used with semiconductor based transistor devices. The stress liner masks are generated with automated design tools that leverage layout data corresponding to features, devices, and structures on the wafer. A resulting stress liner mask (and wafers fabricated using the stress liner mask) defines a stress liner coverage area that extends beyond the boundary of the transistor area and into a stress insensitive area of the wafer. The extended stress liner further enhances performance of the respective transistor by providing additional compressive/tensile stress.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: July 20, 2010
    Assignee: Globalfoundries Inc.
    Inventors: Zhonghai Shi, Mark Michael, Donna Michael, legal representative, David Wu, James F. Buller, Jingrong Zhou, Akif Sultan
  • Publication number: 20100044761
    Abstract: A semiconductor device is provided which includes a substrate including an inactive region and an active region, a gate electrode structure having portions overlying the active region, a compressive layer overlying the active region, and a tensile layer overlying the inactive region and located outside the active region. The active region has a lateral edge which defines a width of the active region, and a transverse edge which defines a length of the active region. The gate electrode structure includes: a common portion spaced apart from the active region; a plurality of gate electrode finger portions integral with the common portion, and a plurality of fillet portions integral with the common portion and the gate electrode finger portions. A portion of each gate electrode finger portion overlies the active region. The fillet portions are disposed between the common portion and the gate electrode finger portions, and do not overlie the active region.
    Type: Application
    Filed: October 21, 2009
    Publication date: February 25, 2010
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Akif SULTAN, James F. BULLER, Kaveri MATHUR
  • Patent number: 7638837
    Abstract: A stress-enhanced semiconductor device is provided which includes a substrate having an inactive region and an active region, a first-type stress layer overlying at least a portion of the active region, and a second-type stress layer. The active region includes a first lateral edge which defines a first width of the active region, and a second lateral edge which defines a second width of the active region. The second-type stress layer is disposed adjacent the second lateral edge of the active region.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: December 29, 2009
    Assignee: GlobalFoundries Inc.
    Inventors: Akif Sultan, Mark Michael, Donna Michael, legal representative, David Wu
  • Patent number: 7633103
    Abstract: A semiconductor device is provided which includes a substrate including an inactive region and an active region, a gate electrode structure having portions overlying the active region, a compressive layer overlying the active region, and a tensile layer overlying the inactive region and located outside the active region. The active region has a lateral edge which defines a width of the active region, and a transverse edge which defines a length of the active region. The gate electrode structure includes: a common portion spaced apart from the active region; a plurality of gate electrode finger portions integral with the common portion, and a plurality of fillet portions integral with the common portion and the gate electrode finger portions. A portion of each gate electrode finger portion overlies the active region. The fillet portions are disposed between the common portion and the gate electrode finger portions, and do not overlie the active region.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: December 15, 2009
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Akif Sultan, James F. Buller, Kaveri Mathur
  • Patent number: 7598161
    Abstract: The halo implant technique described herein employs a halo implant mask that creates a halo implant shadowing effect during halo dopant bombardment. A first transistor device structure and a second transistor device structure are formed on a wafer such that they are orthogonally oriented to each other. A common halo implant mask is created with features that prevent halo implantation of the diffusion region of the second transistor device structure during halo implantation of the diffusion region of the first transistor device structure, and with features that prevent halo implantation of the diffusion region of the first transistor device structure during halo implantation of the diffusion region of the second transistor device structure. The orthogonal orientation of the transistor device structures and the pattern of the halo implant mask obviates the need to create multiple implant masks to achieve different threshold voltages for the transistor device structures.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: October 6, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jingrong Zhou, Mark Michael, Donna Michael, legal representative, David Wu, James F. Buller, Akif Sultan