Patents by Inventor Alan B. Botula

Alan B. Botula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160126158
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: January 8, 2016
    Publication date: May 5, 2016
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Patent number: 9324628
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: April 26, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Patent number: 9257324
    Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: February 9, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Robert M. Rassel, Mark E. Stidham
  • Patent number: 9214561
    Abstract: An integrated recessed thin body field effect transistor (FET) and methods of manufacture are disclosed. The method includes recessing a portion of a semiconductor material. The method further includes forming at least one gate structure within the recessed portion of the semiconductor material.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: December 15, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, James A. Slinkman
  • Patent number: 9165819
    Abstract: According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: October 20, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Alan B. Botula, Jeffrey E. Hanrahan, Mark D. Jaffe, Alvin J. Joseph, Dale W. Martin, Gerd Pfeiffer, James A. Slinkman
  • Publication number: 20150255363
    Abstract: An approach for sinking heat from a transistor is provided. A method includes forming a substrate contact extending from a first portion of a silicon-on-insulator (SOI) island to a substrate. The method also includes forming a transistor in a second portion of the SOI island. The method further includes electrically isolating the substrate contact from the transistor by doping the first portion of the SOI island.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Inventors: Alan B. Botula, Alvin J. Joseph, James A. Slinkman, Randy L. Wolf
  • Publication number: 20150243578
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Publication number: 20150236040
    Abstract: Approaches for body contacted transistors are provided. A method of manufacturing a semiconductor structure includes forming a field effect transistor (FET) including a channel and a gate. The method also includes forming a diode that is electrically connected between the channel and the gate, wherein the diode and channel are contained in a same layer of material.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 20, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. BOTULA, Randy L. WOLF
  • Patent number: 9070651
    Abstract: A non-linear kerf monitor, methods of manufacture and design structures are provided. The structure includes a coplanar waveguide provided in a kerf of a wafer between a first chip and a second chip. The structure further includes a shunt switch and a series switch coupled to the coplanar waveguide.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 30, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Alvin J. Joseph, Randy L. Wolf
  • Patent number: 9059269
    Abstract: An approach for sinking heat from a transistor is provided. A method includes forming a substrate contact extending from a first portion of a silicon-on-insulator (SOI) island to a substrate. The method also includes forming a transistor in a second portion of the SOI island. The method further includes electrically isolating the substrate contact from the transistor by doping the first portion of the SOI island.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, James A. Slinkman, Randy L. Wolf
  • Publication number: 20150072504
    Abstract: According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: Alan B. Botula, Jeffrey E. Hanrahan, Mark D. Jaffe, Alvin J. Joseph, Dale W. Martin, Gerd Pfeiffer, James A. Slinkman
  • Patent number: 8963293
    Abstract: A semiconductor structure and a method of forming the same. In one embodiment, a method of forming a silicon-on-insulator (SOI) wafer substrate includes: providing a handle substrate; forming a high resistivity material layer over the handle substrate, the high resistivity material layer including one of an amorphous silicon carbide (SiC), a polycrystalline SiC, an amorphous diamond, or a polycrystalline diamond; forming an insulator layer over the high resistivity material layer; and bonding a donor wafer to a top surface of the insulator layer to form the SOI wafer substrate.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph
  • Publication number: 20150041896
    Abstract: A semiconductor structure and method of manufacture and, more particularly, a field effect transistor that has a body contact and method of manufacturing the same is provided. The structure includes a device having a raised source region of a first conductivity type and an active region below the raised source region extending to a body of the device. The active region has a second conductivity type different than the first conductivity type. A contact region is in electric contact with the active region. The method includes forming a raised source region over an active region of a device and forming a contact region of a same conductivity type as the active region, wherein the active region forms a contact body between the contact region and a body of the device.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Alan B. BOTULA, Alvin J. JOSEPH, Stephen E. LUCE, John J. PEKARIK, Yun SHI
  • Patent number: 8951896
    Abstract: According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Jeffrey E. Hanrahan, Mark D. Jaffe, Alvin J. Joseph, Dale W. Martin, Gerd Pfeiffer, James A. Slinkman
  • Publication number: 20150001622
    Abstract: An integrated recessed thin body field effect transistor (FET) and methods of manufacture are disclosed. The method includes recessing a portion of a semiconductor material. The method further includes forming at least one gate structure within the recessed portion of the semiconductor material.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, James A. Slinkman
  • Publication number: 20150004778
    Abstract: According to a method herein, a first side of a substrate is implanted with a first material to change a crystalline structure of the first side of the substrate from a first crystalline state to a second crystalline state, after the first material is implanted. A second material is deposited on the first side of the substrate, after the first material is implanted. A first side of an insulator layer is bonded to the second material on the first side of the substrate. Integrated circuit devices are formed on a second side of the insulator layer, opposite the first side of the insulator layer, after the insulator layer is bonded to the second material. The integrated circuit devices are thermally annealed. The first material maintains the second crystalline state of the first side of the substrate during the annealing.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: ALAN B. BOTULA, Jeffrey E. Hanrahan, Mark D. Jaffe, Alvin J. Joseph, Dale W. Martin, Gerd Pfeiffer, James A. Slinkman
  • Patent number: 8921190
    Abstract: A semiconductor structure and method of manufacture and, more particularly, a field effect transistor that has a body contact and method of manufacturing the same is provided. The structure includes a device having a raised source region of a first conductivity type and an active region below the raised source region extending to a body of the device. The active region has a second conductivity type different than the first conductivity type. A contact region is in electric contact with the active region. The method includes forming a raised source region over an active region of a device and forming a contact region of a same conductivity type as the active region, wherein the active region forms a contact body between the contact region and a body of the device.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Stephen E. Luce, John J. Pekarik, Yun Shi
  • Patent number: 8916467
    Abstract: A doped contact region having an opposite conductivity type as a bottom semiconductor layer is provided underneath a buried insulator layer in a bottom semiconductor layer. At least one conductive via structure extends from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer and to the doped contact region. The doped contact region is biased at a voltage that is at or close to a peak voltage in the RF switch that removes minority charge carriers within the induced charge layer. The minority charge carriers are drained through the doped contact region and the at least one conductive via structure. Rapid discharge of mobile electrical charges in the induce charge layer reduces harmonic generation and signal distortion in the RF switch. A design structure for the semiconductor structure is also provided.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
  • Patent number: 8912597
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate including a first source drain region, a second source drain region, and an intrinsic region therebetween; an asymmetric lightly doped drain (LDD) region within the substrate, wherein the asymmetric LDD region extends from the first source drain region into the intrinsic region between the first source drain region and the second source drain region; and a gate positioned atop the semiconductor substrate, wherein an outer edge of the gate overlaps the second source drain region. A related method and design structure are also disclosed.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Robert M. Rassel, Yun Shi, Mark E. Stidham
  • Patent number: 8901676
    Abstract: Disclosed are embodiments of a lateral, extended drain, metal oxide semiconductor, field effect transistor (LEDMOSFET) having a high drain-to-body breakdown voltage. Discrete conductive field (CF) plates are adjacent to opposing sides of the drain drift region, each having an angled sidewall such that the area between the drain drift region and the CF plate has a continuously increasing width along the length of the drain drift region from the channel region to the drain region. The CF plates can comprise polysilicon or metal structures or dopant implant regions within the same semiconductor body as the drain drift region. The areas between the CF plates and the drain drift region can comprise tapered dielectric regions or, alternatively, tapered depletion regions within the same semiconductor body as the drain drift region. Also disclosed are embodiments of a method for forming an LEDMOSFET and embodiments of a silicon-controlled rectifier (SCR) incorporating such LEDMOSFETs.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: December 2, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Alvin J. Joseph, Theodore J. Letavic, James A. Slinkman