Patents by Inventor Alan B. Botula

Alan B. Botula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8890246
    Abstract: Integrated circuits having doped bands in a substrate and beneath high-voltage semiconductor-on-insulator (SOI) devices are provided. In one embodiment, the invention provides an integrated circuit comprising: a semiconductor-on-insulator (SOI) wafer including: a substrate; a buried oxide (BOX) layer atop the substrate; and a semiconductor layer atop the BOX layer; a plurality of high voltage (HV) devices connected in series within the semiconductor layer; a doped band within the substrate and below a first of the plurality of HV devices; and a contact extending from the semiconductor layer and through the BOX layer to the doped band.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Beth Ann Rainey, Yun Shi
  • Patent number: 8866226
    Abstract: At least one conductive via structure is formed from an interconnect-level metal line through a middle-of-line (MOL) dielectric layer, a shallow trench isolation structure in a top semiconductor layer, and a buried insulator layer to a bottom semiconductor layer. The shallow trench isolation structure laterally abuts at least two field effect transistors that function as a radio frequency (RF) switch. The at least one conductive via structure and the at interconnect-level metal line may provide a low resistance electrical path from the induced charge layer in a bottom semiconductor layer to electrical ground, discharging the electrical charge in the induced charge layer. The discharge of the charge in the induced charge layer thus reduces capacitive coupling between the semiconductor devices and the bottom semiconductor layer, and thus secondary coupling between components electrically disconnected by the RF switch is reduced.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Edward J. Nowak, Yun Shi, James A. Slinkman
  • Publication number: 20140306325
    Abstract: A silicon device includes an active silicon layer, a buried oxide (BOX) layer beneath the active silicon layer and a high-resistivity silicon layer beneath the BOX layer. The device also includes a harmonic suppression layer at a boundary of the BOX layer and the high-resistivity silicon layer.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 16, 2014
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, Richard A. Phelps, James Slinkman, Randy L. Wolf
  • Patent number: 8828746
    Abstract: A silicon device includes an active silicon layer, a buried oxide (BOX) layer beneath the active silicon layer and a high-resistivity silicon layer beneath the BOX layer. The device also includes a harmonic suppression layer at a boundary of the BOX layer and the high-resistivity silicon layer.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, Richard A. Phelps, James Slinkman, Randy L. Wolf
  • Publication number: 20140213036
    Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: International Business Machines Corporation
    Inventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Robert M. Rassel, Mark E. Stidham
  • Publication number: 20140191322
    Abstract: An approach for sinking heat from a transistor is provided. A method includes forming a substrate contact extending from a first portion of a silicon-on-insulator (SOI) island to a substrate. The method also includes forming a transistor in a second portion of the SOI island. The method further includes electrically isolating the substrate contact from the transistor by doping the first portion of the SOI island.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. BOTULA, Alvin J. JOSEPH, James A. SLINKMAN, Randy L. WOLF
  • Patent number: 8748285
    Abstract: A semiconductor structure includes a semiconductor-on-insulator substrate, the semiconductor-on-insulator substrate comprising a handle wafer, a buried oxide (BOX) layer on top of the handle wafer, and a top silicon layer on top of the BOX layer; and an implantation region located in the top silicon layer, the implantation region comprising a noble gas.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: June 10, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, William F. Clark, Jr., Richard A. Phelps, BethAnn Rainey, Yun Shi, James A. Slinkman
  • Patent number: 8741739
    Abstract: A semiconductor structure and a method of forming the same. In one embodiment, a method of forming a silicon-on-insulator (SOI) wafer substrate includes: providing a handle substrate; forming a high resistivity material layer over the handle substrate, the high resistivity material layer including one of an amorphous silicon carbide (SiC), a polycrystalline SiC, an amorphous diamond, or a polycrystalline diamond; forming an insulator layer over the high resistivity material layer; and bonding a donor wafer to a top surface of the insulator layer to form the SOI wafer substrate.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph
  • Patent number: 8735986
    Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Robert M. Rassel, Mark E. Stidham
  • Publication number: 20140131800
    Abstract: A silicon device includes an active silicon layer, a buried oxide (BOX) layer beneath the active silicon layer and a high-resistivity silicon layer beneath the BOX layer. The device also includes a harmonic suppression layer at a boundary of the BOX layer and the high-resistivity silicon layer.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, Richard A. Phelps, James Slinkman, Randy L. Wolf
  • Patent number: 8722508
    Abstract: A low harmonic radio-frequency (RF) switch in a silicon-on-insulator (SOI) substrate and methods of manufacture. A method includes forming at least one trench through an insulator layer. The at least one trench is adjacent a device formed in an active region on the insulator layer. The method also includes forming at least one cavity in a substrate under the insulator layer and extending laterally from the at least one trench to underneath the device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 13, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Dinh Dang, James S. Dunn, Alvin J. Joseph, Peter J. Lindgren
  • Publication number: 20140124902
    Abstract: A semiconductor structure and a method of forming the same. In one embodiment, a method of forming a silicon-on-insulator (SOI) wafer substrate includes: providing a handle substrate; forming a high resistivity material layer over the handle substrate, the high resistivity material layer including one of an amorphous silicon carbide (SiC), a polycrystalline SiC, an amorphous diamond, or a polycrystalline diamond; forming an insulator layer over the high resistivity material layer; and bonding a donor wafer to a top surface of the insulator layer to form the SOI wafer substrate.
    Type: Application
    Filed: January 9, 2014
    Publication date: May 8, 2014
    Applicant: International Business Machines Corporation
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph
  • Patent number: 8709903
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: April 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Patent number: 8698244
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method and a design structure for such a semiconductor structure.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: April 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Patent number: 8674472
    Abstract: A low harmonic radio-frequency (RF) switch in a silicon-on-insulator (SOI) substrate and methods of manufacture. A method includes forming at least one trench through an insulator layer. The at least one trench is adjacent a device formed in an active region on the insulator layer. The method also includes forming at least one cavity in a substrate under the insulator layer and extending laterally from the at least one trench to underneath the device.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Dinh Dang, James S. Dunn, Alvin J. Joseph, Peter J. Lindgren
  • Publication number: 20140004687
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 2, 2014
    Applicant: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Publication number: 20130299903
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate including a first source drain region, a second source drain region, and an intrinsic region therebetween; an asymmetric lightly doped drain (LDD) region within the substrate, wherein the asymmetric LDD region extends from the first source drain region into the intrinsic region between the first source drain region and the second source drain region; and a gate positioned atop the semiconductor substrate, wherein an outer edge of the gate overlaps the second source drain region. A related method and design structure are also disclosed.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 14, 2013
    Applicant: International Business Machines Corporation
    Inventors: Alan B. Botula, Robert M. Rassel, Yun Shi, Mark E. Stidham
  • Patent number: 8564067
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Patent number: 8536035
    Abstract: Silicon-on-insulator (SOI) structures and related methods of forming such structures. In one case, a method includes providing a silicon-on-insulator (SOI) handle substrate having: a substantially uniform resistivity profile along a depth of the handle substrate; and an interstitial oxygen (Oi) concentration of less than approximately 10 parts per million atoms (ppma). The method further includes counter-doping a surface region of the handle, causing the surface region to have a resistivity greater than approximately 3 kOhm-cm, and joining the surface region of the handle substrate with a donor wafer.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, Kenneth F. McAvey, Gerd Pfeiffer, Richard A. Phelps
  • Patent number: 8518782
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a semiconductor substrate including a first source drain region, a second source drain region, and an intrinsic region therebetween; an asymmetric lightly doped drain (LDD) region within the substrate, wherein the asymmetric LDD region extends from the first source drain region into the intrinsic region between the first source drain region and the second source drain region; and a gate positioned atop the semiconductor substrate, wherein an outer edge of the gate overlaps the second source drain region. A related method and design structure are also disclosed.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Robert M. Rassel, Yun Shi, Mark E. Stidham