Patents by Inventor Alan Barber

Alan Barber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11897158
    Abstract: Machines for cutting products and impellers suitable for use therein. Such an impeller includes a lower plate and paddles configured with the lower plate to direct material placed on the lower plate in a radially outward direction of the impeller under the influence of centrifugal forces when the impeller is rotated. At least one of the paddles has an outer radial extent that is adjacent a perimeter of the lower plate. At least a first exit hole is located in the lower plate and has a wall section that completely closes the first exit hole along the perimeter at an upper surface of the lower plate. The first exit hole extends through the lower plate to define a passageway connected to the upper surface to enable foreign debris at the upper surface to exit the impeller through the passageway.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: February 13, 2024
    Assignees: Urschel Laboratories, Inc., Pepsico, Inc.
    Inventors: Keith Alan Barber, Corey Everette Baxter, Rebecca Glynn Gann
  • Patent number: 11725180
    Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: August 15, 2023
    Assignee: The General Hospital Corporation
    Inventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Nezihi Murat Karabacak
  • Patent number: 11396108
    Abstract: Methods and apparatuses for cutting food products. The apparatus includes an annular-shaped cutting head having at least a first mounting frame surrounding a central axis of the cutting head and a plurality of cutting tools arranged around the central axis of the cutting head and pivotably coupled to the first mounting frame such that each cutting tool has a pivot axis. The method includes deflecting each cutting tool about its pivot axis by engaging first portions of the cutting tools in proximity to the first mounting frame to deflect the first portions a first radial deflection distance relative to the central axis and engaging second portions of the cutting tools to deflect the second portions a second radial deflection distance relative to the central axis. The first and second radial deflection distances can be adjusted individually or in unison.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: July 26, 2022
    Assignees: Urschel Laboratories, Inc., Frito-Lay North America, Inc.
    Inventors: Corey Everette Baxter, Michael Scot Jacko, Keith Alan Barber, Richard James Ruegg, Daniel Wade King
  • Publication number: 20220126475
    Abstract: Machines for cutting products and impellers suitable for use therein. Such an impeller includes a lower plate and paddles configured with the lower plate to direct material placed on the lower plate in a radially outward direction of the impeller under the influence of centrifugal forces when the impeller is rotated. At least one of the paddles has an outer radial extent that is adjacent a perimeter of the lower plate. At least a first exit hole is located in the lower plate and has a wall section that completely closes the first exit hole along the perimeter at an upper surface of the lower plate. The first exit hole extends through the lower plate to define a passageway connected to the upper surface to enable foreign debris at the upper surface to exit the impeller through the passageway.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Inventors: Keith Alan Barber, Corey Everette Baxter, Rebecca Glynn Gann
  • Publication number: 20220106553
    Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.
    Type: Application
    Filed: October 15, 2021
    Publication date: April 7, 2022
    Inventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Nezihi Murat Karabacak
  • Patent number: 11155779
    Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: October 26, 2021
    Assignee: The General Hospital Corporation
    Inventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Nezihi Murat Karabacak
  • Publication number: 20200223084
    Abstract: Methods and apparatuses for cutting food products. The apparatus includes an annular-shaped cutting head having at least a first mounting frame surrounding a central axis of the cutting head and a plurality of cutting tools arranged around the central axis of the cutting head and pivotably coupled to the first mounting frame such that each cutting tool has a pivot axis. The method includes deflecting each cutting tool about its pivot axis by engaging first portions of the cutting tools in proximity to the first mounting frame to deflect the first portions a first radial deflection distance relative to the central axis and engaging second portions of the cutting tools to deflect the second portions a second radial deflection distance relative to the central axis. The first and second radial deflection distances can be adjusted individually or in unison.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 16, 2020
    Inventors: Corey Everette Baxter, Michael Scot Jacko, Keith Alan Barber, Richard James Ruegg
  • Patent number: 10668470
    Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: June 2, 2020
    Assignee: The General Hospital Corporation
    Inventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner
  • Patent number: 10548341
    Abstract: A potato chip that has more oil near its outer surfaces than in its interior and a unique RVA profile is disclosed. The organoleptic properties of the inventive potato chips compare favorably to known and commercially available potato chips.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: February 4, 2020
    Assignee: Frito-Lay North America, Inc.
    Inventors: Keith Alan Barber, Justin French, Girish Ganjyal, Christopher James Koh, Scott L. Sullivan
  • Patent number: 10517431
    Abstract: A method and system for producing fried food pieces with reduced oil content is disclosed. The food pieces are immersion fried in hot oil at a first temperature to an intermediate moisture content, and finish fried at a second, higher oil temperature to a final moisture content.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: December 31, 2019
    Assignee: FRITO-LAY NORTH AMERICA, INC.
    Inventors: Keith Alan Barber, Justin French, Girish Ganjyal, Christopher James Koh, Scott L. Sullivan
  • Publication number: 20190264166
    Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.
    Type: Application
    Filed: January 24, 2019
    Publication date: August 29, 2019
    Inventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Murat N. Karabacak
  • Patent number: 10202577
    Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: February 12, 2019
    Assignee: The General Hospital Corporation
    Inventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Murat N. Karabacak
  • Publication number: 20190030535
    Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.
    Type: Application
    Filed: January 23, 2018
    Publication date: January 31, 2019
    Inventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner
  • Patent number: 9902080
    Abstract: An apparatus for slicing food product to produce food product slices. The apparatus includes a rotatable cutting wheel having two or more knife assemblies. Each knife assembly includes a knife extending radially between a hub and rim of the cutting wheel. The knife has a leading edge facing a direction of rotation of the cutting wheel and a large-amplitude corrugated shape characterized by peaks and valleys. The knife is secured to the hub and rim with a knife holder, and a clamp secures the knife to a first surface of the knife holder. The knife holder and knife are configured to provide continuous and accurate alignment of an individual food product throughout the slicing thereof by the knife of each knife assembly to produce food product slices with a generally parallel-cut cross-section having a uniform thickness and a large-amplitude periodic shape with an amplitude of 0.1 inch or greater.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: February 27, 2018
    Assignee: Urschel Laboratories, Inc.
    Inventors: Enrique Michel, John Poole Hildebrand, Keith Alan Barber, Michael Scot Jacko, Daniel Wade King
  • Patent number: 9878327
    Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: January 30, 2018
    Assignee: The General Hospital Corporation
    Inventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner
  • Publication number: 20170050329
    Abstract: An apparatus for slicing food product to produce food product slices. The apparatus includes a rotatable cutting wheel having two or more knife assemblies. Each knife assembly includes a knife extending radially between a hub and rim of the cutting wheel. The knife has a leading edge facing a direction of rotation of the cutting wheel and a large-amplitude corrugated shape characterized by peaks and valleys. The knife is secured to the hub and rim with a knife holder, and a clamp secures the knife to a first surface of the knife holder. The knife holder and knife are configured to provide continuous and accurate alignment of an individual food product throughout the slicing thereof by the knife of each knife assembly to produce food product slices with a generally parallel-cut cross-section having a uniform thickness and a large-amplitude periodic shape with an amplitude of 0.1 inch or greater.
    Type: Application
    Filed: November 4, 2016
    Publication date: February 23, 2017
    Applicants: Urschel Laboratories, Inc., Frito-Lay North America Inc.
    Inventors: Enrique Michel, John Poole Hildebrand, Keith Alan Barber, Michael Scot Jacko, Daniel Wade King
  • Patent number: 9517572
    Abstract: Apparatuses for cutting food product are provided having a cutting head. The cutting head includes one or more knife assemblies. Each knife assembly includes a knife extending toward the food product and is adapter to secure the knife to the cutting head. The knife has a corrugated shape to produce a food product slice with generally parallel cuts wherein the food product slice has a periodic shape and a large-amplitude cross-section.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: December 13, 2016
    Assignees: Urschel Laboratories, Inc., Frito-Lay North America Inc.
    Inventors: Enrique Michel, John Poole Hildebrand, Keith Alan Barber, Michael Scot Jacko, Daniel Wade King
  • Patent number: 9462818
    Abstract: A high-amplitude corrugated food product and method of making same. The corrugated food product comprises a corrugated surface on opposing surfaces, each surface having a plurality of peaks with substantially equal amplitude values of at least about 2.54 mm. The corrugated food product further comprises a high area moment of inertia of between about 20×10?8 m3 to about 160×10?8 m3 with a dehydration factor of less than about 1.7, which provides for less breakage and more texture. The corrugated food product has a 90°-to-0° hardness ratio of at least about 2.78 and a 90°-to-0° and a crispiness ratio of at least about 3.14.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: October 11, 2016
    Assignee: Frito-Lay North America, Inc.
    Inventors: Keith Alan Barber, Deborah Fischer, John Hildebrand, Enrique Michel
  • Publication number: 20160263574
    Abstract: This disclosure describes microfluidic devices that include one or more magnets, each magnet being operable to emit a magnetic field; and a magnetizable layer adjacent to the one or more magnets, in which the magnetizable layer is configured to induce a gradient in the magnetic field of at least one of the magnets. For example, the gradient can be at least 103 T/m at a position that is at least 20 ?m away from a surface of the magnetizable layer. The magnetizable layer includes a first high magnetic permeability material and a low magnetic permeability material arranged adjacent to the high magnetic permeability material. The devices also include a microfluidic channel arranged on a surface of the magnetizable layer, wherein a central longitudinal axis of the microfluidic channel is arranged at an angle to or laterally offset from an interface between the high magnetic permeability material and the low magnetic permeability material.
    Type: Application
    Filed: March 7, 2016
    Publication date: September 15, 2016
    Inventors: Kyle C. Smith, Ramin Haghgooie, Thomas Alan Barber, Ismail Emre Ozkumur, Ravi Kapur, Mehmet Toner
  • Publication number: 20160244714
    Abstract: Microfluidic devices are described that include a microfluidic channel, a first array of one or more magnets above the microfluidic channel, each magnet in the first array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the first array, and a second array of one or more magnets beneath the microfluidic channel, each magnet in the second array having a magnetic pole orientation opposite to a magnetic pole orientation of an adjacent magnet in the second array. The first array is aligned with respect to the second array such that magnetic fields emitted by the first array and second array generate a magnetic flux gradient profile extending through the channel. An absolute value of the profile includes a first maximum and a second maximum that bound a local minimum. The local minimum is located within the microfluidic channel or less than 5 mm away from a wall of the microfluidic channel. Methods of using the new devices are also described.
    Type: Application
    Filed: October 20, 2014
    Publication date: August 25, 2016
    Inventors: Philipp S. Spuhler, Kyle C. Smith, Fabio Fachin, Thomas Alan Barber, Ravi Kapur, Mehmet Toner, Vincent Pai, Murat N. Karabacak