Patents by Inventor Alexander Goldin

Alexander Goldin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8326402
    Abstract: A method for tracking a position of an object includes generating alternating current (AC) magnetic fields at two or more frequencies in a vicinity of the object using at least one field generator. The AC fields are sensed using a field sensor associated with the object. Corresponding AC data points that are indicative of amplitudes and directions of the AC fields at the field sensor are produced, wherein at least some of the sensed AC fields are subject to a distortion. A dependence of the AC data points on the frequencies of the AC fields is extrapolated to a target frequency so as to determine the amplitudes and directions of the AC fields with a reduced level of the distortion. Position coordinates of the object relative to the at least one field generator are calculated responsively to the extrapolated data points.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: December 4, 2012
    Assignee: Biosense Webster, Inc.
    Inventors: Assaf Govari, Alexander Goldin, Meir Bar-Tal
  • Patent number: 8288685
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: October 16, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Publication number: 20120205347
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Application
    Filed: April 9, 2012
    Publication date: August 16, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Publication number: 20120170603
    Abstract: Embodiments provide systems, devices, and methods for controlling a laser. The system includes a controller to control a laser, a ramp generator to ramp down laser power, the ramp generator electrically coupled with the controller and coupleable with the laser, and a hardware protection system electrically coupled with the ramp generator, wherein the ramp generator monitors signals sent from the controller and the hardware protection system to the ramp generator to detect signal failure and ramps down the laser power upon signal failure detection. The method includes sending a control status signal from a controller for a laser to a ramp generator, monitoring the control status signal for missing pulses, sending a hardware interlock status signal from a hardware protection system to the ramp generator, monitoring the hardware interlock status signal for signal failure, and ramping down laser power upon detection of missing pulses or signal failure.
    Type: Application
    Filed: December 12, 2011
    Publication date: July 5, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Oleg SEREBRYANOV, Alexander GOLDIN, Abhilash J. MAYUR, Leonid M. Tertitski
  • Patent number: 8178819
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: May 15, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 8106591
    Abstract: An apparatus and method for detecting lamp failure is described for an array of lamps used in a rapid thermal processing system. The lamp failure detection system enables identification of a failed lamp among a plurality of lamps, and also provides identification of the failure type. The apparatus applies a lamp failure detection method to the voltage drop values measured across each lamp to determine if a lamp is in a failure state. In one embodiment, a field programmable gate array is used to apply a failure detection method to the lamp voltage values.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: January 31, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Oleg V. Serebryanov, Alexander Goldin, Joseph Michael Ranish
  • Publication number: 20110206358
    Abstract: A rapid thermal process chamber having a lamp driver circuit that includes two transistors and two diodes is described. The rapid thermal process chamber includes a plurality of halogen lamps, the lamp driver, a temperature sensor that measures wafer temperature, a temperature controller connected to the temperature sensor and to the lamp driver, the temperature controller providing control signals to the lamp driver that are functions of the wafer temperature and a desired temperature. The lamp driver includes two transistors that are controlled by the control signals so that the power factor of the power supplied to the plurality of halogen lamps is in the range of 0.9 to 1.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 25, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Alexander Goldin, Oleg V. Serebryanov
  • Publication number: 20110133742
    Abstract: An apparatus and method for detecting lamp failure is described for an array of lamps used in a rapid thermal processing system. The lamp failure detection system enables identification of a failed lamp among a plurality of lamps, and also provides identification of the failure type. The apparatus applies a lamp failure detection method to the voltage drop values measured across each lamp to determine if a lamp is in a failure state. In one embodiment, a field programmable gate array is used to apply a failure detection method to the lamp voltage values.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 9, 2011
    Inventors: OLEG V. Serebryanov, Alexander Goldin, Joseph Michael Ranish
  • Publication number: 20110095007
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Application
    Filed: December 29, 2010
    Publication date: April 28, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 7923933
    Abstract: An apparatus and method for detecting lamp failure is described for an array of lamps used in a rapid thermal processing system. The lamp failure detection system enables identification of a failed lamp among a plurality of lamps, and also provides identification of the failure type. The apparatus applies a lamp failure detection method to the voltage drop values measured across each lamp to determine if a lamp is in a failure state. In one embodiment, a field programmable gate array is used to apply a failure detection method to the lamp voltage values.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: April 12, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Oleg V. Serebryanov, Alexander Goldin, Joseph Michael Ranish
  • Patent number: 7875829
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: January 25, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 7872209
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: January 18, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Patent number: 7783478
    Abstract: A method for multifunctional processing of signals in frequency subbands performs subband decomposition and signal processing in two stages. A fullband signal is first splitted, with downsampling, into wide frequency subband (WFS) signals. Processing algorithms not requiring a high frequency resolution but benefiting from downsampling (such as subband acoustic echo cancellation), are applied to the WFS signals by wide subband processing blocks. Processed WFS signals are splitted, preferably without downsampling, into groups of narrow frequency subband (NFS) signals. The NFS signals are processed using processing algorithms (noise suppression, etc.) requiring a higher resolution. Processed NFS signals are synthesized into processed WFS signals, which are recombined into an output signal. Two-stage processing makes it possible to optimize signal processing, while keeping computational costs at low level and avoiding undesirable time delays.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: August 24, 2010
    Inventor: Alexander Goldin
  • Publication number: 20100054518
    Abstract: A hands-free method of controlling a voice communication or music session via a sound terminal by a user employing a headset connected with said terminal. On detecting any of preselected movements, orientations and/or vibrations of the headset, at least one sensor comprised in the headset generates a corresponding signal. This signal is received and processed by a receiving/processing circuit comprised in the headset or in the sound terminal, with transforming said signal to corresponding control data. These control data are sent to the sound terminal, which generates an appropriate command, such as “Accept call”, “Reject call”, “Increase sound volume”, etc. The headset, the sound terminal and a sound system for implementing the method are also disclosed.
    Type: Application
    Filed: September 4, 2008
    Publication date: March 4, 2010
    Inventor: Alexander Goldin
  • Publication number: 20080164822
    Abstract: An apparatus and method for detecting lamp failure is described for an array of lamps used in a rapid thermal processing system. The lamp failure detection system enables identification of a failed lamp among a plurality of lamps, and also provides identification of the failure type. The apparatus applies a lamp failure detection method to the voltage drop values measured across each lamp to determine if a lamp is in a failure state. In one embodiment, a field programmable gate array is used to apply a failure detection method to the lamp voltage values.
    Type: Application
    Filed: January 4, 2007
    Publication date: July 10, 2008
    Inventors: Oleg V. Serebryanov, Alexander Goldin, Joseph Michael Ranish
  • Publication number: 20080162123
    Abstract: A method for multifunctional processing of signals in frequency subbands performs subband decomposition and signal processing in two stages. A fullband signal is first splitted, with downsampling, into wide frequency subband (WFS) signals. Processing algorithms not requiring a high frequency resolution but benefiting from downsampling (such as subband acoustic echo cancellation), are applied to the WFS signals by wide subband processing blocks. Processed WFS signals are splitted, preferably without downsampling, into groups of narrow frequency subband (NFS) signals. The NFS signals are processed using processing algorithms (noise suppression, etc.) requiring a higher resolution. Processed NFS signals are synthesized into processed WFS signals, which are recombined into an output signal. Two-stage processing makes it possible to optimize signal processing, while keeping computational costs at low level and avoiding undesirable time delays.
    Type: Application
    Filed: January 3, 2007
    Publication date: July 3, 2008
    Inventor: Alexander Goldin
  • Publication number: 20080125646
    Abstract: A method for tracking a position of an object includes generating alternating current (AC) magnetic fields at two or more frequencies in a vicinity of the object using at least one field generator. The AC fields are sensed using a field sensor associated with the object. Corresponding AC data points that are indicative of amplitudes and directions of the AC fields at the field sensor are produced, wherein at least some of the sensed AC fields are subject to a distortion. A dependence of the AC data points on the frequencies of the AC fields is extrapolated to a target frequency so as to determine the amplitudes and directions of the AC fields with a reduced level of the distortion. Position coordinates of the object relative to the at least one field generator are calculated responsively to the extrapolated data points.
    Type: Application
    Filed: August 21, 2006
    Publication date: May 29, 2008
    Inventors: Assaf Govari, Alexander Goldin, Meir Bar-Tal
  • Publication number: 20080041831
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Application
    Filed: October 25, 2007
    Publication date: February 21, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Dean Jennings, Mark Yam, Abhilash Mayur, Vernon Behrens, Paul O'Brien, Leonid Tertitski, Alexander Goldin
  • Publication number: 20070114214
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Application
    Filed: September 15, 2006
    Publication date: May 24, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Dean Jennings, Mark Yam, Abhilash Mayur, Vernon Behrens, Paul O'Brien, Leonid Tertitski, Alexander Goldin
  • Publication number: 20070108166
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, a three-dimensional auto-focus, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Application
    Filed: November 20, 2006
    Publication date: May 17, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Dean Jennings, Mark Yam, Abhilash Mayur, Vernon Behrens, Paul O'Brien, Leonid Tertitski, Alexander Goldin