Patents by Inventor Alexander Reznicek

Alexander Reznicek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240063121
    Abstract: Backside contacts wrapping around source/drain regions provide increased contact areas for electrical connections between field-effect transistors and metallization layers. Cavities formed within a device layer expose sidewalls of selected source/drain regions. The backside contacts extend within such cavities and adjoin the sidewall surfaces and bottom surfaces of the selected source/drain regions.
    Type: Application
    Filed: August 16, 2022
    Publication date: February 22, 2024
    Inventors: Ruilong Xie, Tsung-Sheng Kang, Daniel Schmidt, Alexander Reznicek
  • Patent number: 11910734
    Abstract: A structure including a bottom electrode, a phase change material layer vertically aligned and an ovonic threshold switching layer vertically aligned above the phase change material layer. A structure including a bottom electrode, a phase change material layer and an ovonic threshold switching layer vertically aligned above the phase change material layer, and a first barrier layer physically separating the ovonic threshold switching layer from a top electrode. A method including forming a structure including a liner vertically aligned above a first barrier layer, the first barrier layer vertically aligned above a phase change material layer, the phase change material layer vertically aligned above a bottom electrode, forming a dielectric surrounding the structure, and forming an ovonic threshold switching layer on the first barrier layer, vertical side surfaces of the first buffer layer are vertically aligned with the first buffer layer, the phase change material layer and the bottom electrode.
    Type: Grant
    Filed: May 4, 2023
    Date of Patent: February 20, 2024
    Assignee: International Business Machines Corporation
    Inventors: Nanbo Gong, Takashi Ando, Robert L. Bruce, Alexander Reznicek, Bahman Hekmatshoartabari
  • Publication number: 20240055426
    Abstract: The present invention relates generally to semiconductors, and more particularly, to a structure and method of minimizing shorting between epitaxial regions in small pitch fin field effect transistors (FinFETs). In an embodiment, a dielectric region may be formed in a middle portion of a gate structure. The gate structure be formed using a gate replacement process, and may cover a middle portion of a first fin group, a middle portion of a second fin group and an intermediate region of the substrate between the first fin group and the second fin group. The dielectric region may be surrounded by the gate structure in the intermediate region. The gate structure and the dielectric region may physically separate epitaxial regions formed on the first fin group and the second fin group from one another.
    Type: Application
    Filed: April 19, 2023
    Publication date: February 15, 2024
    Inventors: Kangguo Cheng, Balasubramanian Pranatharthiharan, Alexander Reznicek, Charan V. Surisetty
  • Patent number: 11901449
    Abstract: A method of forming an electrical device that includes forming a multilayered fin composed of a first source/drain layer for a first transistor, a first channel layer for the first transistor, a common source/drain layer for the first transistor and a second transistor, a second channel layer for the second transistor and a second source/drain layer for the second transistor. A common spacer is formed on the common source/drain layer that separates a first opening to the first channel layer from a second opening to the second channel layer. Gate structures are then formed in the first and second openings.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: February 13, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alexander Reznicek, Bahman Hekmatshoartabari, Tak H. Ning
  • Publication number: 20240047524
    Abstract: An etch stop layer is provided in a vertical stack containing a bottom material stack and a top material stack. Notably, the etch stop layer is provided in an area in which a step region is desired and thus during the etch use to provide the step region the etch stops on the etch stop layer without tapering or compromising the height of the top material stack. Also, prior to gate formation, a dielectric oxide is formed in an area in proximity to the nanosheet step region and a portion thereof remains in the structure after nanosheet and functional gate structure formation.
    Type: Application
    Filed: August 8, 2022
    Publication date: February 8, 2024
    Inventors: Tsung-Sheng Kang, Tao Li, Ruilong Xie, Alexander Reznicek
  • Patent number: 11894444
    Abstract: A semiconductor structure may include one or more metal gates, one or more channels below the one or more metal gates, a gate dielectric layer separating the one or more metal gates from the one or more channels, and a high-k material embedded in the gate dielectric layer. Both the high-k material and the gate dielectric layer may be in direct contact with the one or more channels. The high-k material may provide threshold voltage variation in the one or more metal gates. The high-k material is a first high-k material or a second high-k material. The semiconductor structure may only include the first high-k material embedded in the gate dielectric layer. The semiconductor structure may only include the second high-k material embedded in the gate dielectric layer. The semiconductor structure may include both the first high-k material and the second high-k material embedded in the gate dielectric layer.
    Type: Grant
    Filed: December 6, 2022
    Date of Patent: February 6, 2024
    Assignee: International Business Machines Corporation
    Inventors: Clint Jason Oteri, Alexander Reznicek, Bahman Hekmatshoartabari, Jingyun Zhang, Ruilong Xie
  • Patent number: 11894433
    Abstract: A stacked semiconductor device comprising a lower source/drain epi located on top of a bottom dielectric layer. An isolation layer located on top of the lower source/drain epi and an upper source/drain epi located on top of the isolation layer. A lower electrical contact that is connected to the lower source/drain epi, wherein the lower electrical contact is in direct contact with multiple side surfaces of the lower source/drain epi.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: February 6, 2024
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Ruilong Xie, Chen Zhang, Kangguo Cheng
  • Patent number: 11887890
    Abstract: Partial self-aligned contact structures are provided. In one aspect, a method of forming a semiconductor device includes: patterning fins in a substrate; forming a gate(s) over the fins, separated from source/drains by first spacers, wherein a lower portion of the gate(s) includes a workfunction-setting metal, and an upper portion of the gate(s) includes a core metal between a metal liner; recessing the metal liner to form divots in the upper portion of the gate(s) in between the first spacers and the core metal; forming second spacers in the divots such that the first spacers and the second spacers surround the core metal in the upper portion of the gate(s); forming lower source/drain contacts in between the first spacers over the source/drains; recessing the lower source/drain contacts to form gaps over the lower source/drain contacts; and forming source/drain caps in the gaps. A semiconductor device is also provided.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: January 30, 2024
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Veeraraghavan Basker, Alexander Reznicek, Junli Wang
  • Publication number: 20240030284
    Abstract: Embodiments of present invention provide a method of forming a semiconductor structure. The method includes forming a first set of nanosheets and a second set of nanosheets on top of the first set of nanosheets, wherein the first set of nanosheets has an uppermost nanosheet and the second set of nanosheets has a lowermost nanosheet, the lowermost nanosheet being separated from the uppermost nanosheet by a first gap; forming a conformal liner covering the first set of nanosheets and the first gap; covering a first portion of the conformal liner at the first gap with a protective stud; selectively removing a second portion of the conformal liner from end surfaces of the first set of nanosheets; and forming source/drain at the end surfaces of the first set of nanosheets. A structure formed thereby is also provided.
    Type: Application
    Filed: July 22, 2022
    Publication date: January 25, 2024
    Inventors: Tsung-Sheng Kang, Daniel Schmidt, Alexander Reznicek, Ruilong Xie
  • Patent number: 11881505
    Abstract: A semiconductor structure includes a plurality of fins on a semiconductor substrate, the plurality of fins including an alternating sequence of a first nanosheet made of epitaxially grown silicon and a second nanosheet made of epitaxially grown silicon germanium, and a shallow trench isolation region within the semiconductor substrate adjacent to the plurality of fins. The shallow trench isolation region including a recess within the substrate filled with a first liner, a second liner directly above the first liner, a third liner directly above the second liner, and a dielectric material directly above the third liner. The first liner is made of a first oxide material, the third liner is made of a nitride material, and the second liner is made of a second oxide material that creates a dipole effect for neutralizing positive charges within the third liner and positive charges between the third liner and the first liner.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: January 23, 2024
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Xin Miao, Alexander Reznicek, Jingyun Zhang
  • Patent number: 11869983
    Abstract: A Junction Field Effect Transistor (JFET) has a source and a drain disposed on a substrate. The source and drain have an S/D doping with an S/D doping type. Two or more channels are electrically connected in parallel between the source and drain and can carry a current between the source and drain. Each of the channels has two or more channel surfaces. The channel has the same channel doping type as the S/D doping type. A first gate is in direct contact with one of the channel surfaces. One or more second gates is in direct contact with a respective second channel surface. The gates are doped with a gate doping that has a gate doping type opposite of the channel doping type. A p-n junction (junction gate) is formed where the gates and channel surfaces are in direct contact. The first and second gates are electrically connected so a voltage applied to the first and second gates creates at least two depletion regions in each of the channels.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: January 9, 2024
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Bahman Hekmatshoartabari, Karthik Balakrishnan
  • Patent number: 11869812
    Abstract: A complementary field effect transistor (CFET) structure including a first transistor disposed above a second transistor, and a first source/drain region of the first transistor disposed above a second source/drain region of the second transistor, wherein the second source/drain region comprises a recessed notch beneath the first source/drain region.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: January 9, 2024
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Huimei Zhou, Miaomiao Wang, Alexander Reznicek
  • Patent number: 11869893
    Abstract: Embodiments of the present invention are directed to a method for forming a complementary field effect transistor (CFET) structure having a wrap-around contact. In a non-limiting embodiment of the invention, a complementary nanosheet stack is formed over a substrate. The complementary nanosheet stack includes a first nanosheet and a second nanosheet separated by a dielectric spacer. A first sacrificial layer is formed over a source or drain (S/D) region of the first nanosheet and a second sacrificial layer is formed over a S/D region of the second nanosheet. A conductive gate is formed over channel regions of the first nanosheet and the second nanosheet. After the conductive gate is formed, the first sacrificial layer is replaced with a first wrap-around contact and the second sacrificial layer is replaced with a second wrap-around contact.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: January 9, 2024
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Chun-Chen Yeh, Alexander Reznicek, Dechao Guo
  • Patent number: 11862710
    Abstract: A semiconductor device includes a first source/drain region on an upper surface of a semiconductor substrate that extends along a first direction to define a length and a second direction opposite the first direction to define a width. A channel region extends vertically in a direction perpendicular to the first and second directions from a first end contacting the first source/drain region to an opposing second end contacting a second source/drain region. A gate surrounds a channel portion of the channel region, and a first doped source/drain extension region is located between the first source/drain region and the channel portion. The first doped source/drain extension region has a thickness extending along the vertical direction. A second doped source/drain extension region is located between the second source/drain region and the channel portion. The second doped source/drain extension region has a thickness extending along the vertical direction that matches the first thickness.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: January 2, 2024
    Assignee: International Business Machines Corporation
    Inventors: Chun-Chen Yeh, Alexander Reznicek, Veeraraghavan Basker, Junli Wang
  • Patent number: 11855148
    Abstract: The embodiments herein describe a vertical field effect transistor (FET) with a gate that includes different work function metals (WFMs). Each WFM can be made up of one material (or one layer) or multiple materials forming multiple layers. In any case, the gate includes at least two different WFMs. For example, a first WFM may have a different material or layer than a second WFM in the gate, or one layer of the first WFM may have a different thickness than a corresponding layer in the second WFM. Having different WFMs in the gate can reduce the gate induced drain leakage (GIDL) in the FET.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: December 26, 2023
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Ruilong Xie, Pouya Hashemi, Alexander Reznicek
  • Patent number: 11855180
    Abstract: A method of forming a semiconductor device that includes forming an inner dielectric spacer and outer dielectric spacer combination structure on a sacrificial gate structure that is present on a fin structure, wherein the inner dielectric spacer and outer dielectric spacer combination structure separates source and drain regions from the sacrificial gate structure. The method further includes removing the inner sidewall dielectric spacer; and forming a channel epitaxial wrap around layer on the portion of the fin structure that is exposed by removing the inner sidewall dielectric spacer. The method further includes removing the sacrificial gate structure to provide a gate opening to a channel portion of the fin structure, wherein the gate opening exposes the channel epitaxial wrap around layer; and forming a functional gate structure within the gate opening.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: December 26, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alexander Reznicek, Takashi Ando, Jingyun Zhang, Ruilong Xie
  • Publication number: 20230412765
    Abstract: Methods, systems, and a computer program product are disclosed. The first method includes obtaining virtual session data in real time, identifying a positional utterance in the virtual session data, and generating a positional insight for the positional utterance. The first method also includes rendering a user avatar in a position recommended based on the positional insight. The second method includes obtaining virtual session data in real time, identifying a positional utterance in the virtual session data, and generating positional insights for the positional utterance. The second method also includes generating at least one position recommendation based on the positional insights.
    Type: Application
    Filed: June 20, 2022
    Publication date: December 21, 2023
    Inventors: Martin G. Keen, Jeremy R. Fox, Alexander Reznicek, Bahman Hekmatshoartabari
  • Publication number: 20230410435
    Abstract: Methods, systems, and a computer program product are disclosed. The first method includes obtaining virtual session data in real time, identifying a positional utterance in the virtual session data, and generating a positional insight for the positional utterance. The first method also includes generating a best-practices recommendation based on the positional insight. The second method includes obtaining virtual session data, identifying positional utterances in the virtual session data, and generating positional insights for each of the positional utterances. The second method also includes selecting each of the positional insights having confidence scores above a threshold score and generating best-practices recommendations based on the selected positional insights.
    Type: Application
    Filed: June 20, 2022
    Publication date: December 21, 2023
    Inventors: Martin G. Keen, Jeremy R. Fox, Alexander Reznicek, Bahman Hekmatshoartabari
  • Patent number: 11848264
    Abstract: A semiconductor structure may include a metal line, a via above and in electrical contact with the metal lines, and a dielectric layer positioned along a top surface of the metal lines. A top surface of the dielectric layer may be below the dome shaped tip of the via. A top portion of the via may include a dome shaped tip. The semiconductor structure may include a liner positioned along the top surface of the dielectric layer and a top surface of the dome shaped tip of the via. The liner may be made of tantalum nitride or titanium nitride. The dielectric layer may be made of a low-k material. The metal line and the via may be made of ruthenium. The metal line may be made of molybdenum.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: December 19, 2023
    Assignee: International Business Machines Corporation
    Inventors: Koichi Motoyama, Kenneth Chun Kuen Cheng, Chanro Park, Alexander Reznicek
  • Publication number: 20230402542
    Abstract: A uniform moon-shaped bottom spacer for a VTFET device is provided utilizing a replacement bottom spacer that is epitaxially grown above a bottom source/drain region. After filling a trench that is formed into a substrate with a dielectric fill material that also covers the replacement bottom spacer, the replacement bottom spacer is accessed, removed and then replaced with a moon-shaped bottom spacer.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 14, 2023
    Inventors: Ruilong Xie, Chen Zhang, Julien Frougier, Alexander Reznicek, SHOGO MOCHIZUKI