Patents by Inventor An-Fu YU

An-Fu YU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11778922
    Abstract: A method for fabricating semiconductor device includes first forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, performing an atomic layer deposition (ALD) process or a high-density plasma (HDP) process to form a passivation layer on the first MTJ and the second MTJ, performing an etching process to remove the passivation layer adjacent to the first MTJ and the second MTJ, and then forming an ultra low-k (ULK) dielectric layer on the passivation layer.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: October 3, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Patent number: 11769812
    Abstract: A semiconductor device includes a substrate and a gate structure over the substrate. The semiconductor device includes a source in the substrate on a first side of the gate structure. The semiconductor device further includes a drain in the substrate on a second side of the gate structure. The semiconductor device further includes a first well having a first dopant type, wherein the first well contacts at least two surfaces of the source. The semiconductor device further includes a second well having the first dopant type, wherein the second well contacts at least two surfaces of the drain. The semiconductor device further includes a deep well below the first well and below the second well, wherein the second well extends between the first well and the deep well. In some embodiments, the deep well has a second dopant type, and the second dopant type is opposite the first dopant type.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu
  • Publication number: 20230301210
    Abstract: A memory device and a manufacturing method thereof are provided. The memory device includes a device substrate, a resistance variable layer and a top electrode. The bottom electrode is disposed on the device substrate. The resistance variable layer is disposed on the bottom electrode. The top electrode is disposed on the resistance variable layer. The bottom electrode is formed with a tensile stress, while the top electrode is formed with a compressive stress.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Applicant: United Microelectronics Corp.
    Inventors: Chich-Neng Chang, Da-Jun Lin, Shih-Wei Su, Fu-Yu Tsai, Bin-Siang Tsai
  • Patent number: 11736245
    Abstract: A wireless device performs spatial reuse in a wireless local area network. When receiving a packet, the wireless device measures a received signal quality from a first portion of the packet, and determines a required signal quality for correctly decoding a payload of the packet based on information in a packet header. The wireless device compares the received signal quality with the required signal quality. If the received signal quality is lower than the required signal quality, the wireless device transmits a signal that overlaps in time and in frequency with a second portion of the packet. Alternatively, a wireless device may identify a Basic Service Set Identification (BSSID) of a received packet. If the BSSID indicates that the packet is an inter-BSS packet, the wireless device transmits a signal overlapping in time and in frequency with the packet before reception of a frame check sequence (FCS) in the packet.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: August 22, 2023
    Assignee: MediaTek Inc.
    Inventors: Ray-Kuo Lin, Tsungjung Lee, Fu-yu Tsai, Wei-Chen Wang
  • Patent number: 11737370
    Abstract: A semiconductor device includes a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, a passivation layer on the first MTJ and the second MTJ, and an ultra low-k (ULK) dielectric layer on the passivation layer. Preferably, a top surface of the passivation layer between the first MTJ and the second MTJ is lower than a top surface of the passivation layer directly on top of the first MTJ.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: August 22, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Publication number: 20230260937
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming an aluminum (Al) pad on a substrate, forming a passivation layer on the substrate and an opening exposing the Al pad, forming a cobalt (Co) layer in the opening and on the Al pad, bonding a wire onto the Co layer, and then performing a thermal treatment process to form a Co—Pd alloy on the Al pad.
    Type: Application
    Filed: April 25, 2023
    Publication date: August 17, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Bin-Siang Tsai, Fu-Yu Tsai
  • Patent number: 11723215
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming a magnetic tunneling junction (MTJ) on a substrate, forming a top electrode on the MTJ, forming an inter-metal dielectric (IMD) layer around the top electrode and the MTJ, forming a landing layer on the IMD layer and the MTJ, and then patterning the landing layer to form a landing pad. Preferably, the landing pad is disposed on the top electrode and the IMD layer adjacent to one side of the top electrode.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: August 8, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Yi-An Shih, Bin-Siang Tsai, Fu-Yu Tsai
  • Publication number: 20230244586
    Abstract: The disclosure provides an electronic device. The electronic device includes a computer system, a light emitting module, and a control unit. The computer system is adapted to execute a boot procedure, the boot procedure lasting for a first time period. A light emitting module includes a plurality of indicator lights, each indicator light providing an indication function. The control unit is electrically connected to the light emitting module. The control unit controls the indicator lights to generate a first light emitting effect within a second time period when the computer system enters the boot procedure. The second time period is shorter than the first time period.
    Type: Application
    Filed: September 20, 2022
    Publication date: August 3, 2023
    Inventors: Fu-Yu CAI, Chun-Fu CHEN, Che-Hsiung CHAO, Ming-Chih HUANG, Tong-Shen HSIUNG, Shang-Chih LIANG
  • Patent number: 11707003
    Abstract: A memory device and a manufacturing method thereof are provided. The memory device includes a device substrate, a resistance variable layer and a top electrode. The bottom electrode is disposed on the device substrate. The resistance variable layer is disposed on the bottom electrode. The top electrode is disposed on the resistance variable layer. The bottom electrode is formed with a tensile stress, while the top electrode is formed with a compressive stress.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: July 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chich-Neng Chang, Da-Jun Lin, Shih-Wei Su, Fu-Yu Tsai, Bin-Siang Tsai
  • Patent number: 11706993
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first ultra low-k (ULK) dielectric layer on the first MTJ; performing a first etching process to remove part of the first ULK dielectric layer and forming a damaged layer on the first ULK dielectric layer; and forming a second ULK dielectric layer on the damaged layer.
    Type: Grant
    Filed: December 27, 2020
    Date of Patent: July 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Tai-Cheng Hou, Wei-Xin Gao, Fu-Yu Tsai, Chin-Yang Hsieh, Chen-Yi Weng, Jing-Yin Jhang, Bin-Siang Tsai, Kun-Ju Li, Chih-Yueh Li, Chia-Lin Lu, Chun-Lung Chen, Kun-Yuan Liao, Yu-Tsung Lai, Wei-Hao Huang
  • Publication number: 20230200088
    Abstract: A semiconductor device includes a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate, a first ultra low-k (ULK) dielectric layer on the first MTJ and the second MTJ, a passivation layer on the first ULK dielectric layer, and a second ULK dielectric layer on the passivation layer.
    Type: Application
    Filed: February 23, 2023
    Publication date: June 22, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Ju Li, Tai-Cheng Hou, Hsin-Jung Liu, Fu-Yu Tsai, Bin-Siang Tsai, Chau-Chung Hou, Yu-Lung Shih, Ang Chan, Chih-Yueh Li, Chun-Tsen Lu
  • Patent number: 11676920
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming an aluminum (Al) pad on a substrate, forming a passivation layer on the substrate and an opening exposing the Al pad, forming a cobalt (Co) layer in the opening and on the Al pad, bonding a wire onto the Co layer, and then performing a thermal treatment process to form a Co—Pd alloy on the Al pad.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: June 13, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Bin-Siang Tsai, Fu-Yu Tsai
  • Publication number: 20230173615
    Abstract: A method of forming a package structure includes an etching step, a laser step, a plating step and a singulation step. In the etching step, a plurality of cutting streets of a leadframe are etched. In the laser step, a plastic package material covering on each of the cutting streets is removed via a laser beam. In the plating step, a plurality of plating surfaces are disposed on a plurality of areas of the leadframe without the plastic package material. In the singulation step, the cutting streets of the leadframe are cut to form the package structure.
    Type: Application
    Filed: February 2, 2023
    Publication date: June 8, 2023
    Inventors: Cheng-Fu YU, Kai-Jih SHIH, Yi-Jung LIU
  • Publication number: 20230157180
    Abstract: A method for fabricating a semiconductor device includes the steps of forming a magnetic tunneling junction (MTJ) on a substrate, forming a first inter-metal dielectric (IMD) layer on the MTJ, removing part of the first IMD layer to form a damaged layer on the MTJ and a trench exposing the damaged layer, performing a ultraviolet (UV) curing process on the damaged layer, and then conducting a planarizing process to remove the damaged layer and part of the first IMD layer.
    Type: Application
    Filed: December 12, 2021
    Publication date: May 18, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Tai-Cheng Hou, Chau-Chung Hou, Da-Jun Lin, Wei-Xin Gao, Fu-Yu Tsai, Bin-Siang Tsai
  • Patent number: 11621296
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) and a second MTJ on a substrate; forming a first top electrode on the first MTJ and a second top electrode on the second MTJ; forming a first ultra low-k (ULK) dielectric layer on the first MTJ and the second MTJ; forming a passivation layer on the first ULK dielectric layer, wherein a bottom surface of the passivation layer between the first MTJ and the second MTJ is lower than a top surface of the first MTJ; and forming a second ULK dielectric layer on the passivation layer.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: April 4, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Ju Li, Tai-Cheng Hou, Hsin-Jung Liu, Fu-Yu Tsai, Bin-Siang Tsai, Chau-Chung Hou, Yu-Lung Shih, Ang Chan, Chih-Yueh Li, Chun-Tsen Lu
  • Patent number: 11612965
    Abstract: A method of forming a package structure includes an etching step, a laser step, a plating step and a singulation step. In the etching step, a plurality of cutting streets of a leadframe are etched. In the laser step, a plastic package material covering on each of the cutting streets is removed via a laser beam. In the plating step, a plurality of plating surfaces are disposed on a plurality of areas of the leadframe without the plastic package material. In the singulation step, the cutting streets of the leadframe are cut to form the package structure.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: March 28, 2023
    Assignee: INTEGRATED SILICON SOLUTION INC.
    Inventors: Cheng-Fu Yu, Kai-Jih Shih, Yi-Jung Liu
  • Patent number: 11605777
    Abstract: An MRAM structure includes a dielectric layer. A first MRAM, a second MRAM and a third MRAM are disposed on the dielectric layer, wherein the second MRAM is disposed between the first MRAM and the third MRAM, and the second MRAM includes an MTJ. Two gaps are respectively disposed between the first MRAM and the second MRAM and between the second MRAM and the third MRAM. Two tensile stress pieces are respectively disposed in each of the two gaps. A first compressive stress layer surrounds and contacts the sidewall of the MTJ entirely. A second compressive stress layer covers the openings of each of the gaps and contacts the two tensile stress pieces.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 14, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Min-Hua Tsai, Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20230066030
    Abstract: A calibration method for emulating a Group III-V semiconductor device, a method for determining trap location within a Group III-V semiconductor device and method for manufacturing a Group III-V semiconductor device are provided. Actual tape-out is performed according to an actual process flow of the Group III-V semiconductor device for manufacturing the Group III-V semiconductor devices and PCM Group III-V semiconductor device. Actual electrical performances of the Group III-V semiconductor devices and the PCM Group III-V semiconductor device are obtained and the actual electrical performances of the Group III-V semiconductor devices and the PCM Group III-V semiconductor device are compared to determine locations where one or more traps appear.
    Type: Application
    Filed: August 31, 2021
    Publication date: March 2, 2023
    Inventors: CHIA-CHUNG CHEN, SHUFANG FU, KUAN-HUNG LIU, CHIAO-CHUN HSU, FU-YU SHIH, CHI-FENG HUANG, CHU FU CHEN
  • Publication number: 20220406994
    Abstract: The invention provides a semiconductor structure, the semiconductor structure includes a dielectric layer, a plurality of MTJ stacked elements and at least one dummy MTJ stacked element located in the dielectric layer, a first nitride layer covering at least the sidewalls of the MTJ stacked elements and the dummy MTJ stacked elements, a second nitride layer covering the top surfaces of the dummy MTJ stacked elements, the thickness of the second nitride layer is greater than the thickness of the first nitride layer, and a plurality of contact structures located in the dielectric layer and electrically connected with each MTJ stacked element.
    Type: Application
    Filed: July 15, 2021
    Publication date: December 22, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Ching-Hua Hsu, Fu-Yu Tsai, Bin-Siang Tsai
  • Publication number: 20220392850
    Abstract: A warpage-reducing semiconductor structure includes a wafer. The wafer includes a front side and a back side. Numerous semiconductor elements are disposed at the front side. A silicon oxide layer is disposed at the back side. A UV-transparent silicon nitride layer covers and contacts the silicon oxide layer. The refractive index of the UV-transparent silicon nitride layer is between 1.55 and 2.10.
    Type: Application
    Filed: July 7, 2021
    Publication date: December 8, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Chin-Chia Yang, Tai-Cheng Hou, Fu-Yu Tsai, Bin-Siang Tsai