Patents by Inventor Anthony Sanders

Anthony Sanders has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240070844
    Abstract: Methods and system for identifying individual materials from waste streams are disclosed. A request can be received from a requester to assess waste within a waste container. Media in the form at least one of still images or video streams can be accessed from at least one camera located in association with a waste container. The media can be transmitted to an artificial intelligence (AI) platform for processing to determine the class of individual materials contained in the media and provide identification with a confidence level. A data file containing processing results can be created. A response can be generated and transmitted to the requester that initiated the request. The response can include data that further includes all materials found by the AI platform as contained in the media with a confidence level for each and at least one of an identification of the requester, container identification, and container location.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: Phil Lamb, Barry Sanders, Anthony Peter Genovese
  • Patent number: 11664916
    Abstract: The described implementations relate a Passive Optical Network (PON). In one implementation, the PON includes an Optical Network Unit (ONU) that has at least one transmitter subsystem component and an associated optical transmitter. The at least one transmitter subsystem component may be configured to be in an enabled state during a timeslot period assigned to the ONU for transmitting an upstream data burst and a disabled state after the timeslot ends.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: May 30, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Armin Pitzer, Anthony Sanders, Christian Jenkner
  • Publication number: 20230155710
    Abstract: The described implementations relate a Passive Optical Network (PON). In one implementation, the PON includes an Optical Network Unit (ONU) that has at least one transmitter subsystem component and an associated optical transmitter. The at least one transmitter subsystem component may be configured to be in an enabled state during a timeslot period assigned to the ONU for transmitting an upstream data burst and a disabled state after the timeslot ends.
    Type: Application
    Filed: January 17, 2023
    Publication date: May 18, 2023
    Inventors: Armin Pitzer, Anthony Sanders, Christian Jenkner
  • Patent number: 11558137
    Abstract: The described implementations relate a Passive Optical Network (PON). In one implementation, the PON includes an Optical Network Unit (ONU) that has at least one transmitter subsystem component and an associated optical transmitter. The at least one transmitter subsystem component may be configured to be in an enabled state during a timeslot period assigned to the ONU for transmitting an upstream data burst and a disabled state after the timeslot ends.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: January 17, 2023
    Assignee: MaxLinear, Inc.
    Inventors: Armin Pitzer, Anthony Sanders, Christian Jenkner
  • Publication number: 20220384567
    Abstract: A transistor arrangement is disclosed. The transistor arrangement includes a first transistor device and a second transistor device. The first transistor device and the second transistor device are connected in series and integrated in a common semiconductor body. The first transistor device is a lateral superjunction transistor device and is integrated in a first device region of the semiconductor body. The second transistor device is a lateral transistor device and is integrated in at least one second device region of the semiconductor body. The at least one second device region is spaced apart from the first device region.
    Type: Application
    Filed: May 17, 2022
    Publication date: December 1, 2022
    Inventors: Rolf Weis, Franz Hirler, Katarzyna Kowalik-Seidl, Marco Mueller, Anthony Sanders
  • Patent number: 11404962
    Abstract: Disclosed is a power converter circuit and a method for operating the power converter circuit. The power converter circuit includes at least one converter stage and a control circuit. The at least one converter stage includes an input configured to receive an input power, an output configured to supply an output power, a first electronic switch, and a first inductor coupled to the first electronic switch. The control circuit includes a hysteresis controller configured to drive the first electronic switch based on a current measurement signal representing a current through the inductor, a first threshold signal, and a second threshold signal, and an operating point controller configured to detect an operating point of the converter stage to generate the first threshold signal and the second threshold signal based on the detected operating point.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: August 2, 2022
    Assignee: Infineon Technologies Austria AG
    Inventors: Dominik Neumayr, Dominik Bortis, Gerald Deboy, Marc Fahlenkamp, Johann Kolar, Martin Krueger, Anthony Sanders
  • Publication number: 20200389245
    Abstract: The described implementations relate a Passive Optical Network (PON). In one implementation, the PON includes an Optical Network Unit (ONU) that has at least one transmitter subsystem component and an associated optical transmitter. The at least one transmitter subsystem component may be configured to be in an enabled state during a timeslot period assigned to the ONU for transmitting an upstream data burst and a disabled state after the timeslot ends.
    Type: Application
    Filed: April 24, 2020
    Publication date: December 10, 2020
    Inventors: Armin PITZER, Anthony SANDERS, Christian JENKNER
  • Patent number: 10707745
    Abstract: A power supply circuit is equipped with a converter circuit configured to convert an alternating current signal applied at an input of the power supply circuit into a direct current signal. A control circuit for the power supply circuit is configured to detect a phase of the alternating current signal and to control discharging of an internal capacitive element of the power supply circuit based on the detected phase of the alternating current signal.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: July 7, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Feldtkeller, Torsten Hinz, Jens Barrenscheen, Reinhard Mueller, Anthony Sanders
  • Patent number: 10566988
    Abstract: A control circuit for a switching converter is described herein. In accordance with one embodiment the control circuit includes an analog bus that receives a plurality of input signals and a first set of functional units that are operable to receive at least some of the input signals via the analog bus and to process the input signals to generate digital output data based on the input signals. The control circuit further includes an event bus that has an event bus controller and a plurality of bus lines and a second set of functional units that are operable to receive the output data, via the event bus, from the functional units of the first set. At least one functional unit of the second set of functional units is operable to determine switching time instants for the switching converter based on the output data received via the event bus, and the event bus controller includes an arbiter operable to arbitrate data transmission across the bus lines.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: February 18, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Anthony Sanders, Matthias Schneider
  • Patent number: 10547243
    Abstract: A flyback converter includes a primary-side switch connected to a primary-side winding of a transformer and a secondary-side switch connected to a secondary-side winding of the transformer. The flyback converter is operated by controlling the primary-side switch to store energy in the transformer during ON periods of the primary-side switch, switching on the secondary-side switch synchronously with switching off the primary-side switch to transfer energy from the transformer to the secondary side, determining an off time of the secondary-side switch based on a reflected input voltage measured at the secondary-side winding when the primary-side switch is on, accounting for a settling time of the reflected input voltage when determining the off time of the secondary-side switch so that the settling time has little or no effect on the off time, and switching off the secondary-side switch based on the off time.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: January 28, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Xiaowu Gong, Marc Fahlenkamp, Anthony Sanders
  • Publication number: 20190348916
    Abstract: Disclosed is a power converter circuit and a method for operating the power converter circuit. The power converter circuit includes at least one converter stage and a control circuit. The at least one converter stage includes an input configured to receive an input power, an output configured to supply an output power, a first electronic switch, and a first inductor coupled to the first electronic switch. The control circuit includes a hysteresis controller configured to drive the first electronic switch based on a current measurement signal representing a current through the inductor, a first threshold signal, and a second threshold signal, and an operating point controller configured to detect an operating point of the converter stage to generate the first threshold signal and the second threshold signal based on the detected operating point.
    Type: Application
    Filed: July 25, 2019
    Publication date: November 14, 2019
    Inventors: Dominik Neumayr, Dominik Bortis, Gerald Deboy, Marc Fahlenkamp, Johann Kolar, Martin Krueger, Anthony Sanders
  • Publication number: 20190312583
    Abstract: A control circuit for a switching converter is described herein. In accordance with one embodiment the control circuit includes an analog bus that receives a plurality of input signals and a first set of functional units that are operable to receive at least some of the input signals via the analog bus and to process the input signals to generate digital output data based on the input signals. The control circuit further includes an event bus that has an event bus controller and a plurality of bus lines and a second set of functional units that are operable to receive the output data, via the event bus, from the functional units of the first set. At least one functional unit of the second set of functional units is operable to determine switching time instants for the switching converter based on the output data received via the event bus, and the event bus controller includes an arbiter operable to arbitrate data transmission across the bus lines.
    Type: Application
    Filed: April 8, 2019
    Publication date: October 10, 2019
    Inventors: Anthony Sanders, Matthias Schneider
  • Patent number: 10404171
    Abstract: Disclosed is a power converter circuit and a method for operating the power converter circuit. The power converter circuit includes at least one converter stage and a control circuit. The at least one converter stage includes an input configured to receive an input power, an output configured to supply an output power, a first electronic switch, and a first inductor coupled to the first electronic switch. The control circuit includes a hysteresis controller configured to drive the first electronic switch based on a current measurement signal representing a current through the inductor, a first threshold signal, and a second threshold signal, and an operating point controller configured to detect an operating point of the converter stage to generate the first threshold signal and the second threshold signal based on the detected operating point.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: September 3, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Dominik Neumayr, Dominik Bortis, Gerald Deboy, Marc Fahlenkamp, Johann Kolar, Martin Krueger, Anthony Sanders
  • Publication number: 20190149255
    Abstract: The described implementations relate a Passive Optical Network (PON). In one implementation, the PON includes an Optical Network Unit (ONU) that has at least one transmitter subsystem component and an associated optical transmitter. The at least one transmitter subsystem component may be configured to be in an enabled state during a timeslot period assigned to the ONU for transmitting an upstream data burst and a disabled state after the timeslot ends.
    Type: Application
    Filed: June 8, 2018
    Publication date: May 16, 2019
    Inventors: Armin Pitzer, Anthony Sanders, Christian Jenkner
  • Publication number: 20190115846
    Abstract: A flyback converter includes a primary-side switch connected to a primary-side winding of a transformer and a secondary-side switch connected to a secondary-side winding of the transformer. The flyback converter is operated by controlling the primary-side switch to store energy in the transformer during ON periods of the primary-side switch, switching on the secondary-side switch synchronously with switching off the primary-side switch to transfer energy from the transformer to the secondary side, determining an off time of the secondary-side switch based on a reflected input voltage measured at the secondary-side winding when the primary-side switch is on, accounting for a settling time of the reflected input voltage when determining the off time of the secondary-side switch so that the settling time has little or no effect on the off time, and switching off the secondary-side switch based on the off time.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 18, 2019
    Inventors: Xiaowu Gong, Marc Fahlenkamp, Anthony Sanders
  • Publication number: 20180367052
    Abstract: A flyback converter includes a primary-side switch connected to a primary-side winding of a transformer and a secondary-side switch connected to a secondary-side winding of the transformer. The flyback converter is operated by controlling the primary-side switch to store energy in the transformer during ON periods of the primary-side switch, switching on the secondary-side switch synchronously with switching off the primary-side switch to transfer energy from the transformer to the secondary side, determining an off time of the secondary-side switch based on a reflected input voltage measured at the secondary-side winding when the primary-side switch is on, accounting for a settling time of the reflected input voltage when determining the off time of the secondary-side switch so that the settling time has little or no effect on the off time, and switching off the secondary-side switch based on the off time.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 20, 2018
    Inventors: Xiaowu Gong, Marc Fahlenkamp, Anthony Sanders
  • Patent number: 10158297
    Abstract: A flyback converter includes a primary-side switch connected to a primary-side winding of a transformer and a secondary-side switch connected to a secondary-side winding of the transformer. The flyback converter is operated by controlling the primary-side switch to store energy in the transformer during ON periods of the primary-side switch, switching on the secondary-side switch synchronously with switching off the primary-side switch to transfer energy from the transformer to the secondary side, determining an off time of the secondary-side switch based on a reflected input voltage measured at the secondary-side winding when the primary-side switch is on, accounting for a settling time of the reflected input voltage when determining the off time of the secondary-side switch so that the settling time has little or no effect on the off time, and switching off the secondary-side switch based on the off time.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: December 18, 2018
    Assignee: Infineon Technologies Austria AG
    Inventors: Xiaowu Gong, Marc Fahlenkamp, Anthony Sanders
  • Publication number: 20180358890
    Abstract: A power supply circuit is equipped with a converter circuit configured to convert an alternating current signal applied at an input of the power supply circuit into a direct current signal. A control circuit for the power supply circuit is configured to detect a phase of the alternating current signal and to control discharging of an internal capacitive element of the power supply circuit based on the detected phase of the alternating current signal.
    Type: Application
    Filed: June 11, 2018
    Publication date: December 13, 2018
    Inventors: Martin Feldtkeller, Torsten Hinz, Jens Barrenscheen, Reinhard Mueller, Anthony Sanders
  • Publication number: 20180337600
    Abstract: Disclosed is a power converter circuit and a method for operating the power converter circuit. The power converter circuit includes at least one converter stage and a control circuit. The at least one converter stage includes an input configured to receive an input power, an output configured to supply an output power, a first electronic switch, and a first inductor coupled to the first electronic switch. The control circuit includes a hysteresis controller configured to drive the first electronic switch based on a current measurement signal representing a current through the inductor, a first threshold signal, and a second threshold signal, and an operating point controller configured to detect an operating point of the converter stage to generate the first threshold signal and the second threshold signal based on the detected operating point.
    Type: Application
    Filed: May 18, 2018
    Publication date: November 22, 2018
    Inventors: Dominik Neumayr, Dominik Bortis, Gerald Deboy, Marc Fahlenkamp, Johann Kolar, Martin Krueger, Anthony Sanders
  • Patent number: 10069586
    Abstract: The described implementations relate a Passive Optical Network (PON). In one implementation, the PON includes an Optical Network Unit (ONU) that has at least one transmitter subsystem component and an associated optical transmitter. The at least one transmitter subsystem component may be configured to be in an enabled state during a timeslot period assigned to the ONU for transmitting an upstream data burst and a disabled state after the timeslot ends.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: September 4, 2018
    Assignee: Lantiq Deutschland GmbH
    Inventors: Armin Pitzer, Anthony Sanders, Christian Jenkner