Patents by Inventor Antonios K. Doufas

Antonios K. Doufas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9322114
    Abstract: This invention relates to polypropylene fibers and fabrics containing polypropylene fibers, the fibers comprising propylene polymers comprising at least 50 mol % propylene, said polymers having: a) a melt flow rate (MFR, ASTM 1238, 230° C., 2.16 kg) of about 10 dg/min to about 25 dg/min; b) a dimensionless Stress Ratio/Loss Tangent Index R2 [defined by Eq. (8)] at 190° C. from about 1.5 to about 30; c) an onset temperature of crystallization under flow, Tc,rheol, (as determined by SAOS rheology, 190° C., 1° C./min, where said polymer has 0 wt % nucleating agent present), of at least about 123° C.; d) an average meso run length determined by 13C NMR of at least about 55 or higher; and e) optionally, a loss tangent, tan ?, [defined by Eq. (2)] at an angular frequency of 0.1 rad/s at 190° C. from about 14 to about 70.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: April 26, 2016
    Assignees: EXXONMOBIL CHEMICAL PATENTS INC., REIFENHAUSER GMBH & CO. KG MASCHINENFABRIK
    Inventors: Jeanne Marie MacDonald, Antonios K. Doufas, Jerome Sarrazin, William Michael Ferry, Rahul Ravindra Kulkarni, Derek Wade Thurman, Cynthia Ann Mitchell, Detlef Frey, Peter Schlag, Hans-Georg Geus, Claudio Cinquemani
  • Publication number: 20160053419
    Abstract: This invention relates to polypropylene fibers and fabrics containing polypropylene fibers, the fibers comprising propylene polymers comprising at least 50 mol % propylene, said polymers having: a) a melt flow rate (MFR, ASTM 1238, 230° C., 2.16 kg) of about 10 dg/min to about 25 dg/min; b) a dimensionless Stress Ratio/Loss Tangent Index R2 [defined by Eq. (8)] at 190° C. from about 1.5 to about 30; c) an onset temperature of crystallization under flow, Tc,rheol, (as determined by SAOS rheology, 190° C., 1° C./min, where said polymer has 0 wt % nucleating agent present), of at least about 123° C.; d) an average meso run length determined by 13C NMR of at least about 55 or higher; and e) optionally, a loss tangent, tan?, [defined by Eq. (2)] at an angular frequency of 0.1 rad/s at 190° C. from about 14 to about 70.
    Type: Application
    Filed: September 2, 2015
    Publication date: February 25, 2016
    Inventors: Jeanne Marie MacDonald, Antonios K. DOUFAS, Jerome SARRAZIN, William Michael FERRY, Rahul Ravindra KULKARNI, Derek Wade THURMAN, Cynthia Ann MITCHELL, Detlef FREY, Peter SCHLAG, Hans-Georg GEUS, Claudio CINQUEMANI
  • Publication number: 20150307699
    Abstract: This invention relates to propylene polymers comprising at least 50 mol % propylene, said polymers having: a) a melt flow rate (MFR, ASTM 1238, 230° C., 2.16 kg) of 10 dg/min to 25 dg/min; b) a Dimensionless Stress Ratio/Loss Tangent Index R2 at 190° C. from 1.5 to 28; c) an onset temperature of crystallization under flow, Tc,rheol (as determined by SAOS rheology, 190° C., 1° C./min, where said polymer has 0 wt % nucleating agent present), of at least 131° C.; d) an average meso run length determined by 13C NMR of at least 90 or higher; and e) optionally, a loss tangent, tan ?, (defined by Eq. (2)) at an angular frequency of 0.1 rad/s at 190° C. from 14 to 70.
    Type: Application
    Filed: November 25, 2013
    Publication date: October 29, 2015
    Inventors: Jeanne Marie MACDONALD, Antonios K. DOUFAS, Jerome SARRAZIN, William Michael FERRY, Charles J. RUFF, Rahul Ravindra KULKARNI, Derek Wade THURMAN, Cynthia A. MITCHELL
  • Publication number: 20140155854
    Abstract: This invention relates to polypropylene fibers and fabrics containing polypropylene fibers, the fibers comprising propylene polymers comprising at least 50 mol % propylene, said polymers having: a) a melt flow rate (MFR, ASTM 1238, 230° C., 2.16 kg) of about 10 dg/min to about 25 dg/min; b) a dimensionless Stress Ratio/Loss Tangent Index R2 [defined by Eq. (8)] at 190° C. from about 1.5 to about 30; c) an onset temperature of crystallization under flow, Tc,rheol, (as determined by SAOS rheology, 190° C., 1° C./min, where said polymer has 0 wt % nucleating agent present), of at least about 123° C.; d) an average meso run length determined by 13C NMR of at least about 55 or higher; and e) optionally, a loss tangent, tan ?, [defined by Eq. (2)] at an angular frequency of 0.1 rad/s at 190° C. from about 14 to about 70.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicants: ExxonMobil Chemical Patents Inc.
    Inventors: Jeanne Marie MacDonald, Antonios K. Doufas, Jerome Sarrazin, William Michael Ferry, Rahul Ravindra Kulkarni, Derek Wade Thurman, Cynthia Ann Mitchell, Detlef Frey, Peter Schlag, Hans-Georg Geus, Claudio Cinquemani
  • Publication number: 20120157599
    Abstract: The present invention relates to a class of impact copolymer polypropylene (ICP) compositions exhibiting the advantageous combination of excellent tiger (flow) marking performance in large/long molded parts, very low gels count and exceptional mold flowability (high MFR) despite the high viscosity ratio (e.g., >4) between rubber and propylene based matrix phases. The inventive compositions exhibit significantly reduced the levels of volatiles, and excellent stiffness-impact balance used as standalone materials or in filled compounds. The significantly reduced number of large gels leads to excellent surface appearance and paintability of the molded parts. The composition of the present invention is made with a bulk/gas reactor process (i.e., non-slurry/non-solvent process) that has the advantage of process simplicity, process efficiency and simplicity of compositional structure relative to the complexity in structure and process of making of compositions in the prior art.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 21, 2012
    Inventors: Antonios K. Doufas, Edward Catalina, William C. Thurston, Rita Majewski
  • Patent number: 8067319
    Abstract: A fiber is obtainable from or comprises an ethylene/?-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re>1481?1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: November 29, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Benjamin C. Poon, Yunwa W. Cheung, Shih-Yaw Lai, Ashish Sen, Hongyu Chen, Yuen-Yuen D. Chiu, Rajen M. Patel, Andy C. Chang, Antonios K. Doufas, Hong Peng
  • Patent number: 8044135
    Abstract: The present invention relates to an impact-resistant olefin polymer composition including a polypropylene matrix having a weight average molecular weight and an ethylene-containing polymer including an ethylene-propylene copolymer having a molecular weight higher than the weight average molecular weight of the polypropylene matrix, the composition containing about 20 to 35 percent xylene solubles, and the xylene solubles fraction of the composition containing less than about 39 weight percent ethylene units, based on the combined weight of olefin monomers in the copolymer. The present invention further relates to impact copolymer compositions with a melt flow rate greater than about 8 that meet or exceed all pallet testing requirements.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: October 25, 2011
    Assignee: Braskem America, Inc.
    Inventors: Antonios K. Doufas, Carol R. Barvinchak, Edward Catalina
  • Publication number: 20110207883
    Abstract: The present invention relates to an impact-resistant olefin polymer composition including a polypropylene matrix having a weight average molecular weight and an ethylene-containing polymer including an ethylene-propylene copolymer having a molecular weight higher than the weight average molecular weight of the polypropylene matrix, the composition containing about 20 to 35 percent xylene solubles, and the xylene solubles fraction of the composition containing less than about 39 weight percent ethylene units, based on the combined weight of olefin monomers in the copolymer. The present invention further relates to impact copolymer compositions with a melt flow rate greater than about 8 that meet or exceed all pallet testing requirements.
    Type: Application
    Filed: February 24, 2010
    Publication date: August 25, 2011
    Inventors: Antonios K. Doufas, Carol R. Barvinchak, Edward Catalina
  • Patent number: 7947367
    Abstract: A fiber is obtainable from or comprises an ethylene/?-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and (1) cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re>1481?1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: May 24, 2011
    Assignee: Dow Global Technologies LLC
    Inventors: Benjamin C. Poon, Yunwa W. Cheung, Shih-Yaw Lai, Ashish Sen, Hongyu Chen, Yuen-Yuen D. Chiu, Rajen M. Patel, Andy C. Chang, Antonios K. Doufas, Hong Peng
  • Publication number: 20100279571
    Abstract: A fiber is obtainable from or comprises an ethylene/?-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re>1481?1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
    Type: Application
    Filed: July 19, 2010
    Publication date: November 4, 2010
    Inventors: Benjamin C. Poon, Yunwa W. Cheung, Shih-Yaw Lai, Ashish Sen, Hongyu Chen, Yuen-Yuen D. Chiu, Rajen M. Patel, Andy C. Chang, Antonios K. Doufas, Hong Peng
  • Patent number: 7803728
    Abstract: A fiber is obtainable from or comprises an ethylene/?-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re>1481?1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: September 28, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Benjamin C. Poon, Yunwa W. Cheung, Shih-Yaw Lai, Ashish Sen, Hongyu Chen, Yuen-Yuen D. Chiu, Rajen M. Patel, Andy C. Chang, Antonios K. Doufas, Hong Peng
  • Patent number: 7737061
    Abstract: This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention preferably comprise an elastomeric polyolefin resin and a high pressure low density type resin.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: June 15, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Andy C. Chang, Ronald J. Weeks, Hong Peng, Antonios K. Doufas, Yunwa W. Cheung
  • Patent number: 7732052
    Abstract: This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention preferably comprise an elastomeric polyolefin resin and a high pressure low density type resin.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: June 8, 2010
    Assignee: Dow Global Technologies Inc.
    Inventors: Andy C. Chang, Ronald J. Weeks, Hong Peng, Antonios K. Doufas, Yunwa Wilson Cheung
  • Patent number: 7504347
    Abstract: A fiber is obtainable from or comprises a propylene/?-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re>1481-1629 (d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 17, 2009
    Assignee: Dow Global Technologies Inc.
    Inventors: Benjamin C. Poon, Yunwa W. Cheung, Shih-Yaw Lai, Ashish Sen, Hongyu Chen, Yuen-Yuen D. Chiu, Rajen M. Patel, Andy C. Chang, Antonios K. Doufas, Hong Peng
  • Publication number: 20090042472
    Abstract: A fiber is obtainable from or comprises an ethylene/?-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and (1) cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re>1481?1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven or non-woven fabrics can be made from such fibers.
    Type: Application
    Filed: March 15, 2006
    Publication date: February 12, 2009
    Inventors: Benjamin C. Poon, Yunwa W. Cheung, Shih-Yaw Lai, Ashish Sen, Hongyu Chen, Yuen-Yuen D. Chiu, Rajen M. Patel, Andy C. Chang, Antonios K. Doufas, Hong Peng
  • Publication number: 20080280517
    Abstract: This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention preferably comprise an elastomeric polyolefin resin and a high pressure low density type resin.
    Type: Application
    Filed: March 15, 2006
    Publication date: November 13, 2008
    Inventors: Andy C. Chang, Ronald J. Weeks, Hong Peng, Antonio K. Doufas, Yunwa W. Cheung
  • Publication number: 20080268244
    Abstract: Improvements in the aesthetic appearance and performance properties of heterophasic polymers is obtained through the breaking up and dispersion of large gels. According to the current invention, a novel process is provided for filtration of heterophasic polymers using a fiber metal felt (FMF) media. Molded articles made from impact copolymers prepared according to the present invention have improved appearance and fracture mechanics relative to impact copolymers produced according to prior art methods.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: Antonios K. Doufas, Jeffrey S. Salek, Ronald A. Andrekanic, William C. Thurston, Leon M. Rice
  • Publication number: 20080234435
    Abstract: This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention preferably comprise an elastomeric polyolefin resin and a high pressure low density type resin.
    Type: Application
    Filed: February 15, 2008
    Publication date: September 25, 2008
    Applicant: Dow Global Technologies Inc
    Inventors: Andy C. Chang, Ronald J. Weeks, Hong Peng, Antonios K. Doufas, Yunwa W. Cheung
  • Publication number: 20080199673
    Abstract: The present invention relates to propylene-based nonwoven layers made by the meltblown process, and laminates incorporating such layers. The meltblown layers of the present invention comprise propylene copolymers characterized by having less than 50 percent crystallinity. The meltblown layers of the present invention show an improved combination of extensibility and tensile strength. The laminate structures of the present invention are characterized by a combination of low bending modulus with high peel strength.
    Type: Application
    Filed: August 3, 2006
    Publication date: August 21, 2008
    Inventors: Thomas T. Allgeuer, Andy C. Chang, Gert J. Claasen, Antonios K. Doufas, Edward N. Knickerbocker, Hong Peng, Randy E. Pepper, Jozef J. Van Dun
  • Patent number: 7413803
    Abstract: Extensible bicomponent fibers and webs particularly adapted for disposable personal care product component applications. Sheath/core configurations providing desirable feel properties for elastic embodiments when compared with conventional elastic fibers and webs are obtained with specific olefin polymer combinations and sheath configurations.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: August 19, 2008
    Assignee: Dow Global Technologies Inc.
    Inventors: Joy F. Jordan, Renette E. Richard, Christian L. Sanders, Varunesh Sharma, Stephen M. Englebert, Bryon P. Day, Andy C. Chang, Hong Peng, Jozef J. I. Van Dun, Randy E. Pepper, Edward N. Knickerbocker, Antonios K. Doufas, Rajen M. Patel