Patents by Inventor Apostolos Voutsas

Apostolos Voutsas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060189049
    Abstract: A four-transistor Schmitt trigger inverter is provided. The Schmitt trigger inverter is made from an n-channel MOS (NMOS) dual-gate thin-film transistor (DG-TFT) and a p-channel MOS (PMOS) DG-TFT, both DG-TFTs having a top gate, a back gate, and source/drain regions. A (conventional) NMOS TFT has a gate connected to an NMOS DG-TFT first S/D region and a PMOS DG-TFT first S/D region. The NMOS TFT also has a first S/D region connected to the NMOS DG-TFT back gate and the PMOS DG-TFT back gate. A (conventional) PMOS TFT has a gate connected to the NMOS TFT gate, and a first S/D region connected to the NMOS TFT first S/D region.
    Type: Application
    Filed: April 20, 2006
    Publication date: August 24, 2006
    Inventors: Themistokles Afentakis, Apostolos Voutsas, Paul Schuele
  • Patent number: 7087964
    Abstract: A method is provided to produce thin film transistors (TFTs) on polycrystalline films having a single predominant crystal orientation. A layer of amorphous silicon is deposited over a substrate to a thickness suitable for producing a desired crystal orientation. Lateral-seeded excimer laser annealing (LS-ELA) is used to crystallize the amorphous silicon to form a film with a preferred crystal orientation. A gate is formed overlying the polycrystalline film. The polycrystalline film is doped to produce source and drain regions.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: August 8, 2006
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Apostolos Voutsas
  • Publication number: 20060166415
    Abstract: A two-transistor tri-state inverter is provided, made from a NMOS dual-gate thin-film transistor (DG-TFT) having a top gate, a back gate, and source/drain regions. A PMOS DG-TFT also has a top gate, a back gate, and S/D regions, and the NMOS first S/D region is connected to a PMOS first S/D region. The NMOS top gate is connected to an input signal (Vin), the back gate is connected to a control signal (Vb), the first S/D region supplies an output signal (Vout), and a second S/D region is connected to a reference voltage. The PMOS top gate is connected to the input signal, the back gate is connected to an inverted control signal (?Vb), and a second S/D region is connected to a supply voltage having a higher voltage than the reference voltage.
    Type: Application
    Filed: March 23, 2006
    Publication date: July 27, 2006
    Inventors: Themistokles Afentakis, Apostolos Voutsas, Paul Schuele
  • Publication number: 20060110939
    Abstract: A method is provided for additionally oxidizing a thin-film oxide. The method includes: providing a substrate; depositing an MyOx (M oxide) layer overlying the substrate, where M is a solid element having an oxidation state in a range of +2 to +5; treating the MyOx layer to a high density plasma (HDP) source; and, forming an MyOk layer in response to the HDP source, where k>x. In one aspect, the method further includes decreasing the concentration of oxide charge in response to forming the MyOk layer. In another aspect, the MyOx layer is deposited with an impurity N, and the method further includes creating volatile N oxides in response to forming the MyOk layer. For example, the impurity N may be carbon and the method creates a volatile carbon oxide.
    Type: Application
    Filed: January 6, 2006
    Publication date: May 25, 2006
    Inventors: Pooran Joshi, Apostolos Voutsas, John Hartzell
  • Publication number: 20060079100
    Abstract: A method is provided for forming a silicon nitride (SiNx) film. The method comprises: providing a Si substrate or Si film layer; optionally maintaining a substrate temperature of about 400 degrees C., or less; performing a high-density (HD) nitrogen plasma process where a top electrode is connected to an inductively coupled HD plasma source; and, forming a grown layer of SiNx overlying the substrate. More specifically, the HD nitrogen plasma process includes using an inductively coupled plasma (ICP) source to supply power to a top electrode, independent of the power and frequency of the power that is supplied to the bottom electrode, in an atmosphere with a nitrogen source gas. The SiNx layer can be grown at an initial growth rate of at least about 20 ? in about the first minute.
    Type: Application
    Filed: September 1, 2005
    Publication date: April 13, 2006
    Inventors: Pooran Joshi, Apostolos Voutsas, John Hartzell
  • Publication number: 20060068532
    Abstract: A dual-gate thin film transistor (DG-TFT) and associated fabrication method are provided. The method comprises: forming a first (back) gate in a first horizontal plane; forming source/drain (S/D) regions and an intervening channel region in a second horizontal plane, overlying the first plane; and, forming a second (top) gate in a third horizontal plane, overlying the second plane. The S/D regions and intervening channel region have a combined length, smaller than the length of the first gate. A substrate insulating layer is formed over the substrate, made from a material such as SiO2. A first gate insulation layer is formed over the first gate. Amorphous silicon (a-Si) is deposited over the first gate insulation layer and crystallized. The S/D and channel regions are formed from the crystallized Si layer. A second gate oxide layer is formed over the channel region.
    Type: Application
    Filed: September 28, 2004
    Publication date: March 30, 2006
    Inventors: Paul Schuele, Apostolos Voutsas
  • Publication number: 20060066512
    Abstract: A dual-gate thin-film transistor (DG-TFT) voltage storage circuit is provided. The circuit includes a voltage storage element, a DG-TFT having a first source/drain (S/D) connected to a data line, a top gate connected to a first gate line, a second S/D region connected to the voltage storage element, and a bottom gate connected to a bias line. In one aspect, the circuit further includes a voltage shifter having an input connected to the first gate line and an output to supply a bias voltage on the bias line. Examples of a voltage storage element include a capacitor, a liquid crystal (LC) pixel, and a light emitting diode (LED) pixel.
    Type: Application
    Filed: July 18, 2005
    Publication date: March 30, 2006
    Inventors: Themistokles Afentakis, Apostolos Voutsas, Paul Schuele
  • Publication number: 20060060859
    Abstract: A thin-film transistor (TFT) with a multilayer gate insulator is provided, along with a method for forming the same. The method comprises: forming a channel, first source/drain (S/D) region, and a second S/D region in a Silicon (Si) active layer; using a high-density plasma (HDP) source, growing a first layer of Silicon oxide (SiOx) from the Si active layer, to a first thickness, where x is less than, or equal to 2; depositing a second layer of SiOx having a second thickness, greater than the first thickness, overlying the first layer of SiOx; using the HDP source, additionally oxidizing the second layer of SiOx, wherein the first and second SiOx layers form a gate insulator; and, forming a gate electrode adjacent the gate insulator. In one aspect, the second Si oxide layer is deposited using a plasma-enhanced chemical vapor deposition (PECVD) process with tetraethylorthosilicate (TEOS) precursors.
    Type: Application
    Filed: November 2, 2005
    Publication date: March 23, 2006
    Inventors: Pooran Joshi, Apostolos Voutsas
  • Publication number: 20060054077
    Abstract: A process of lateral crystallization is provided for increasing the lateral growth length (LGL). A localized region of the substrate is heated for a short period of time. While the localized region of the substrate is still heated, a silicon film overlying the substrate is irradiated to anneal the silicon film to crystallize a portion of the silicon film in thermal contact with the heated substrate region. A CO2 laser may be used as a heat source to heat the substrate, while a UV laser or a visible spectrum laser is used to irradiate and crystallize the film.
    Type: Application
    Filed: October 31, 2005
    Publication date: March 16, 2006
    Inventors: Apostolos Voutsas, Robert Sposili, Mark Crowder
  • Publication number: 20060049461
    Abstract: A vertical thin-film transistor (V-TFT) is provided along with a method for forming the V-TFT. The method comprises: providing a substrate made from a material such as Si, quartz, glass, or plastic; conformally depositing an insulating layer overlying the substrate; forming a gate, having sidewalls and a thickness, overlying a substrate insulation layer; forming a gate oxide layer overlying the gate sidewalls, and a gate insulation layer overlying the gate top surface; etching the exposed substrate insulation layer; forming a first source/drain region overlying the gate insulation layer; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall with a channel length about equal to the thickness of the gate, interposed between the first and second source/drain regions.
    Type: Application
    Filed: October 28, 2005
    Publication date: March 9, 2006
    Inventors: Paul Schuele, Apostolos Voutsas
  • Publication number: 20050239238
    Abstract: A method is provided for concurrently forming MP-TFTs and P-TFTs. Generally, the method comprises: forming a P-TFT having source/drain (S/D) regions, an intervening channel region, and a gate, all in a first horizontal plane; and simultaneously forming a MP-TFT having a first gate in the first horizontal plane and at least one S/D region in a second horizontal plane, overlying the first horizontal plane. The vertical TFT (V-TFT) is an MP-TFT having vertical first gate sidewalls and a vertical channel region overlying a gate sidewall. The dual-gate TFT (DG-TFT) is an MP-TFT having a bottom gate, first and second S/D regions with top surfaces, an intervening channel region with a top surface, and a second, top gate with a bottom surface, all in a second horizontal plane, overlying the first horizontal plane.
    Type: Application
    Filed: November 9, 2004
    Publication date: October 27, 2005
    Inventors: Paul Schuele, Apostolos Voutsas
  • Publication number: 20050236671
    Abstract: A vertical thin-film transistor (V-TFT) inverter circuit and a method for forming a multi-planar layout TFT inverter circuit have been provided. The method comprising: forming a P-channel TFT with a gate, a first source/drain (S/D) region in a first horizontal plane, and a second S/D region in a second horizontal plane, different than the first horizontal plane; and, forming an N-channel TFT, adjacent the P-channel TFT, with a gate, a third S/D region in a third horizontal plane, and a fourth S/D region in the second horizontal plane, different than the third horizontal plane. Forming a P-channel TFT includes forming a P-channel top-drain vertical TFT (TDV-TFT), and forming an N-channel TFT includes forming an N-channel TDV-TFT.
    Type: Application
    Filed: June 7, 2004
    Publication date: October 27, 2005
    Inventors: Paul Schuele, Apostolos Voutsas
  • Publication number: 20050236625
    Abstract: A vertical thin-film transistor (V-TFT) is provided along with a method for forming the V-TFT. The method comprises: providing a substrate made from a material such as Si, quartz, glass, or plastic; conformally depositing an insulating layer overlying the substrate; forming a gate, having sidewalls and a thickness, overlying a substrate insulation layer; forming a gate oxide layer overlying the gate sidewalls, and a gate insulation layer overlying the gate top surface; etching the exposed substrate insulation layer; forming a first source/drain region overlying the gate insulation layer; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall with a channel length about equal to the thickness of the gate, interposed between the first and second source/drain regions.
    Type: Application
    Filed: April 23, 2004
    Publication date: October 27, 2005
    Inventors: Paul Schuele, Apostolos Voutsas
  • Publication number: 20050218406
    Abstract: A method is provided for forming a low-temperature vertical gate insulator in a vertical thin-film transistor (V-TFT) fabrication process. The method comprises: forming a gate, having vertical sidewalls and a top surface, overlying a substrate insulation layer; depositing a silicon oxide thin-film gate insulator overlying the gate; plasma oxidizing the gate insulator at a temperature of less than 400° C., using a high-density plasma source; forming a first source/drain region overlying the gate top surface; forming a second source/drain region overlying the substrate insulation layer, adjacent a first gate sidewall; and, forming a channel region overlying the first gate sidewall, in the gate insulator interposed between the first and second source/drain regions. When the silicon oxide thin-film gate insulator is deposited overlying the gate a Si oxide layer, a low temperature deposition process can be used, so that a step-coverage of greater than 65% can be obtained.
    Type: Application
    Filed: May 26, 2005
    Publication date: October 6, 2005
    Inventors: Pooran Joshi, Apostolos Voutsas, John Hartzell
  • Publication number: 20050215066
    Abstract: Methods are provided for forming silicon dioxide (SiO2) on a silicon carbide (SiC) substrate. The method comprises: providing a SiC substrate; supplying an atmosphere including oxygen; performing a high-density (HD) plasma-based process; and, forming a SiO2 layer overlying the SiC substrate. Typically, performing the HD plasma-based process includes connecting a top electrode to an inductively coupled HD plasma source. In one aspect, SiO2 is grown on the SiC substrate. Then, an HD plasma oxidation process is performed that creates a reactive oxygen species and breaks the Si—C bonds in the SiC substrate, to form free Si and C atoms in the SiC substrate. The free Si atoms in the SiC substrate are bonded to the HD plasma-generated reactive oxygen species, and the SiO2 layer is grown.
    Type: Application
    Filed: March 29, 2004
    Publication date: September 29, 2005
    Inventors: Pooran Joshi, Apostolos Voutsas, John Hartzell
  • Publication number: 20050202653
    Abstract: A method is provided for forming a Si and Si—Ge thin films. The method comprises: providing a low temperature substrate material of plastic or glass; supplying an atmosphere; performing a high-density (HD) plasma process, such as an HD PECVD process using an inductively coupled plasma (ICP) source; maintaining a substrate temperature of 400 degrees C., or less; and, forming a semiconductor layer overlying the substrate that is made from Si or Si-germanium. The HD PECVD process is capable of depositing Si at a rate of greater than 100 ? per minute. The substrate temperature can be as low as 50 degrees C. Microcrystalline Si, a-Si, or a polycrystalline Si layer can be formed over the substrate. Further, the deposited Si can be either intrinsic or doped. Typically, the supplied atmosphere includes Si and H. For example, an atmosphere can be supplied including SiH4 and H2, or comprising H2 and Silane with H2/Silane ratio in the range of 0-100.
    Type: Application
    Filed: June 17, 2004
    Publication date: September 15, 2005
    Inventors: Pooran Joshi, Apostolos Voutsas, John Hartzell
  • Publication number: 20050202652
    Abstract: A high-density plasma hydrogenation method is provided. Generally, the method comprises: forming a silicon (Si)/oxide stack layer; plasma oxidizing the Si/oxide stack at a temperature of less than 400° C., using a high density plasma source, such as an inductively coupled plasma (ICP) source; introducing an atmosphere including H2 at a system pressure up to 500 milliTorr; hydrogenating the stack at a temperature of less than 400 degrees C., using the high density plasma source; and forming an electrode overlying the oxide. The electrode may be formed either before or after the hydrogenation. The Si/oxide stack may be formed in a number of ways. In one aspect, a Si layer is formed, and the silicon layer is plasma oxidized at a temperature of less than 400 degrees C., using an ICP source. The oxide formation, additional oxidation, and hydrogenation steps can be conducted in-situ in a common chamber.
    Type: Application
    Filed: December 15, 2004
    Publication date: September 15, 2005
    Inventors: Pooran Joshi, Apostolos Voutsas, John Hartzell
  • Publication number: 20050202662
    Abstract: A method for fabricating a thin film oxide is provided. The method includes: forming a substrate; treating the substrate at temperatures equal to and less than 360° C. using a high density (HD) plasma source; and forming an M oxide layer overlying the substrate where M is an element selected from a group including elements chemically defined as a solid and having an oxidation state in a range of +2 to +5. In some aspects, the method uses an inductively coupled plasma (ICP) source. In some aspects the ICP source is used to plasma oxidize the substrate. In other aspects, HD plasma enhanced chemical vapor deposition is used to deposit the M oxide layer on the substrate. In some aspects of the method, M is silicon and a silicon layer and an oxide layer are incorporated into a TFT.
    Type: Application
    Filed: March 15, 2004
    Publication date: September 15, 2005
    Inventors: Pooran Joshi, Apostolos Voutsas
  • Publication number: 20050179086
    Abstract: Single-crystal devices and a method for forming semiconductor film single-crystal domains are provided. The method comprises: forming a substrate, such as glass or Si; forming an insulator film overlying the substrate; forming a single-crystal seed overlying the substrate and insulator; forming an amorphous film overlying the seed; annealing the amorphous film; and, forming a single-crystal domain in the film responsive to the single-crystal seed. The annealing technique can be (conventional) laser annealing, a laser induced lateral growth (LiLAC) process, or conventional furnace annealing. In some aspects, forming a single-crystal seed includes forming a nanowire or a self assembled monolayer (SAM). For example, a Si nanowire can be formed having a crystallographic orientation of <110> or <100>. When, the seed has a <100> crystallographic orientation, then an n-type TFT can be formed.
    Type: Application
    Filed: April 7, 2005
    Publication date: August 18, 2005
    Inventors: Apostolos Voutsas, John Hartzell
  • Publication number: 20050170568
    Abstract: A high-quality isotropic polycrystalline silicon (poly-Si) and a method for fabricating high quality isotropic poly-Si film are provided. The method includes forming a film of amorphous silicon (a-Si) and using a MISPC process to form poly-Si film in a first area of the a-Si film. The method then anneals a second area, included in the first area, using a Laser-Induced Lateral Growth (LILaC) process. In some aspects, a 2N-shot laser irradiation process is used as the LILaC process. In some aspects, a directional solidification process is used as the LILaC process. In response to using the MISPC film as a precursor film, the method forms low angle grain boundaries in poly-Si in the second area.
    Type: Application
    Filed: April 4, 2005
    Publication date: August 4, 2005
    Inventors: Masao Moriguchi, Apostolos Voutsas, Mark Crowder