Patents by Inventor Atsuo Omaru

Atsuo Omaru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060062717
    Abstract: A powdered graphite and a nonaqueous electrolyte secondary battery are provided. A nonaqueous electrolyte secondary battery is provided which has a highly efficient charge and discharge performance and superior cycle properties. Spheroidizing treatment is appropriately performed for natural graphite having a high capacity by grinding and/or applying impact to form a negative electrode active material, and a negative electrode active layer formed therefrom is provided on a metal electrode foil. Subsequently, the metal electrode foil is applied with a magnetic field so that the spheroidized natural graphite is oriented, followed by drying and compression molding, thereby forming a negative electrode. By the use of this negative electrode, a nonaqueous electrolyte secondary battery can be formed having superior battery properties such as the cycle properties and peeling strength.
    Type: Application
    Filed: September 9, 2005
    Publication date: March 23, 2006
    Inventors: Saori Tokuoka, Atsuo Omaru, Izaya Okae
  • Patent number: 7014954
    Abstract: A nonaqueous electrolyte secondary battery comprises a cathode having a cathode active material capable of electrochemically doping/dedoping lithium, an anode having an anode active material capable of electrochemically doping/dedoping lithium and a nonaqueous electrolyte interposed between the cathode and the anode. The nonaqueous electrolyte includes at least one or more kinds of vinylene carbonate, methoxybenzene compounds or antioxidants. The nonaqueous electrolyte secondary battery has a good cyclic characteristic under any environment of low temperature, ambient temperature and high temperature.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: March 21, 2006
    Assignee: Sony Corporation
    Inventors: Akira Yamaguchi, Atsuo Omaru, Masayuki Nagamine, Minoru Hasegawa
  • Publication number: 20050208385
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material, a negative electrode containing a negative electrode active material capable of being doped/undoped with lithium, and a nonaqueous electrolyte. The nonaqueous electrolyte contains at least one of thiols, thiophenes, thioanisoles, thiazoles, thioacetates, aromatic sulfones, and the derivatives thereof. The capacity of the battery is not significantly degraded after cycling and its cycle life is significantly long.
    Type: Application
    Filed: April 21, 2005
    Publication date: September 22, 2005
    Inventors: Takao Nirasawa, Hidetoshi Ito, Atsuo Omaru
  • Publication number: 20050202318
    Abstract: A negative electrode of a nonaqueous secondary battery is formed of a carbonaceous material. The ratio RG=Gs/Gb of the degree of graphitization Gs of the carbonaceous material, determined by a surface-enhanced Raman spectrum, to the degree of graphitization Gb, determined by a Raman spectrum measured using argon laser light, is at least 4.5. Alternatively, the carbonaceous material has a peak in a wavelength range above 1,360 cm?1 in a surface-enhanced Raman spectrum which is measured by-the same surface-enhanced Raman spectrum. The deterioration of the nonaqueous secondary battery is suppressed during use in high-temperature environments and high capacity is maintained for long periods.
    Type: Application
    Filed: May 12, 2005
    Publication date: September 15, 2005
    Inventors: Kotaro Satori, Akinori Kita, Atsuo Omaru
  • Publication number: 20050202317
    Abstract: A negative electrode of a nonaqueous secondary battery is formed of a carbonaceous material. The ratio RG=Gs/Gb of the degree of graphitization Gs of the carbonaceous material, determined by a surface-enhanced Raman spectrum, to the degree of graphitization Gb, determined by a Raman spectrum measured using argon laser light, is at least 4.5. Alternatively, the carbonaceous material has a peak in a wavelength range above 1,360 cm?1 in a surface-enhanced Raman spectrum which is measured by the same surface-enhanced Raman spectrum. The deterioration of the nonaqueous secondary battery is suppressed during use in high-temperature environments and high capacity is maintained for long periods.
    Type: Application
    Filed: May 12, 2005
    Publication date: September 15, 2005
    Inventors: Kotaro Satori, Akinori Kita, Atsuo Omaru
  • Publication number: 20050191551
    Abstract: Disclosed is a non-aqueous electrolyte secondary battery having an excellent preservation characteristic at a high temperature and charging/discharging cycle characteristic. A rolled body in which a strip-shape positive electrode and negative electrode are rolled with a separator in-between is provided inside a battery can. The positive electrode contains LixMn2-yMayO4 (where, Ma is at least one element selected from the group consisting of metal elements other than Mn, and B) and LiNi1-zMbzO2 (where, Mb is at least one element selected from the group consisting of metal elements other than Ni, and B). By replacing part of Mn and Ni with other elements, the crystal structure can be stabilized. Thereby, the capacity retention ratio after preservation at a high temperature, and a heavy load discharging power under a high electric potential cutoff can be improved.
    Type: Application
    Filed: April 25, 2005
    Publication date: September 1, 2005
    Inventors: Hisashi Tsujimoto, Yoshikatsu Yamamoto, Junji Kuyama, Masayuki Nagamine, Atsuo Omaru, Hiroaki Tanizaki
  • Patent number: 6913856
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material, a negative electrode containing a negative electrode active material capable of being doped/undoped with lithium, and a nonaqueous electrolyte. The nonaqueous electrolyte contains at least one of thiols, thiophenes, thioanisoles, thiazoles, thioacetates, aromatic sulfones, and the derivatives thereof. The capacity of the battery is not significantly degraded after cycling and its cycle life is significantly long.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: July 5, 2005
    Assignee: Sony Corporation
    Inventors: Takao Nirasawa, Hidetoshi Ito, Atsuo Omaru
  • Patent number: 6884543
    Abstract: Disclosed is a non-aqueous electrolyte secondary battery having an excellent preservation characteristic at a high temperature and charging/discharging cycle characteristic. A rolled body in which a strip-shape positive electrode and negative electrode are rolled with a separator in-between is provided inside a battery can. The positive electrode contains LixMn2-yMayO4 (where, Ma is at least one element selected from the group consisting of metal elements other than Mn, and B) and LiNi1-zMbzO2 (where, Mb is at least one element selected from the group consisting of metal elements other than Ni, and B). By replacing part of Mn and Ni with other elements, the crystal structure can be stabilized. Thereby, the capacity retention ratio after preservation at a high temperature, and a heavy load discharging power under a high electric potential cutoff can be improved.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: April 26, 2005
    Assignee: Sony Corporation
    Inventors: Hisashi Tsujimoto, Yoshikatsu Yamamoto, Junji Kuyama, Masayuki Nagamine, Atsuo Omaru, Hiroaki Tanizaki
  • Publication number: 20050019660
    Abstract: A non-aqueous electrolyte battery includes a cathode, an anode and a non-aqueous electrolyte. The anode uses as an anode active material graphite whose Gs value obtained by a formula (1) from a surface-enhanced Raman spectrum measured by using an argon laser beam is 20 or smaller. Gs=Hsg/Hsd??(1) (Here, Hsg represents the height of a signal having a peak within a range of 1580 cm?1 to 1620 cm?1 and Hsd represents the height of a signal having a peak within a range of 1350 cm?1 to 1400 cm?1.) Thus, the high capacity, the high filling characteristics and the low temperature load characteristics of an anode material are improved.
    Type: Application
    Filed: June 23, 2004
    Publication date: January 27, 2005
    Inventors: Keizo Koga, Atsuo Omaru
  • Publication number: 20040224232
    Abstract: A nonaqueous electrolyte secondary battery is provided with a positive electrode including a positive-electrode active material, a negative electrode including a negative-electrode active material, and a nonaqueous electrolyte solution. The negative electrode further includes carbon fibers and carbon flakes. The synergistic effects of the improved retention of the electrolyte solution by the carbon fibers and the improved conductivity between the active material particles by the carbon flakes facilitate doping/undoping of lithium in a high-load current mode and increase the capacity of the battery in the high-load current mode.
    Type: Application
    Filed: June 8, 2004
    Publication date: November 11, 2004
    Inventors: Akira Yamaguchi, Shinji Hatake, Atsuo Omaru, Masayuki Nagamine
  • Patent number: 6806003
    Abstract: A nonaqueous electrolyte secondary battery is provided with a positive electrode including a positive-electrode active material, a negative electrode including a negative-electrode active material, and a nonaqueous electrolyte solution. The negative electrode further includes carbon fibers and carbon flakes. The synergistic effects of the improved retention of the electrolyte solution by the carbon fibers and the improved conductivity between the active material particles by the carbon flakes facilitate doping/undoping of lithium in a high-load current mode and increase the capacity of the battery in the high-load current mode.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: October 19, 2004
    Assignee: Sony Corporation
    Inventors: Akira Yamaguchi, Shinji Hatake, Atsuo Omaru, Masayuki Nagamine
  • Publication number: 20040166414
    Abstract: Carbon fiber having cross sectional shape which satisfies area replenishment rate of 0.8 or more is used as anode material for non-aqueous electrolyte secondary battery. Alternatively, since value of fractal dimension of cross section high order structure of the random radial type carbon fiber can be utilized as material parameter for evaluating the cross sectional structure, carbon fiber in which the value of the fractal dimension is caused to fall within the range from 1.1 to 1.8 and the crystallinity has been controlled such that it falls within reasonable range is used as anode material for non-aqueous electrolyte secondary battery. Further, carbon fiber having cross section high order structure such that the central portion is radial type structure and the surface layer portion is random radial type structure is used as anode material for non-aqueous electrolyte secondary battery. Furthermore, it is also effective to use carbon fiber having notch structure at the cross section.
    Type: Application
    Filed: February 25, 2004
    Publication date: August 26, 2004
    Inventors: Atsuo Omaru, Naoyuki Nakajima, Masayuki Nagamine
  • Patent number: 6764767
    Abstract: A graphite powder suitable for a negative electrode material of a lithium ion secondary battery which assures a high discharging capacity not lower than 320 mAh/g is to be manufactured at a lower cost. Specifically, a graphite powder containing 0.01 to 5.0 wt % of boron and having a looped closure structure at an end of a graphite c-planar layer on the surface of a powder, with the density of the interstitial planar sections between neighboring closure structures being not less than 100/&mgr;m and not more than 1500/&mgr;m, and with d002 being preferably not larger than 3.3650 Å, is manufactured by (1) heat-treating a carbon material pulverized at an elevated speed before or after carbonization for graphization at temperature exceeding 1500° C. or by (2) heat-treating the carbon material pulverized before or after carbonization at a temperature exceeding 1500° C.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: July 20, 2004
    Assignee: Sony Corporation
    Inventors: Koji Moriguchi, Mitsuhara Yonemura, Kazuhito Kamei, Masaru Abe, Hideya Kaminaka, Noriyuki Negi, Atsuo Omaru, Masayuki Nagamine
  • Publication number: 20040115523
    Abstract: A nonaqueous electrolyte battery has a spirally coiled electrode body (10) including a cathode (11) having a cathode active material and an anode (12) having an anode active material which are coiled through a separator (13) in a battery can (1). As the separator (13), is used a separator having a plurality of laminated microporous films made of polyolefine which have different film layer thickness and average pore size. Specially, the separator (13) has three or more layers of microporous films made of polyolefine laminated. Further, the outermost layer of the separator is made of porous polypropylene and at least one layer of inner layers is made of porous polyethylene. The total of the thickness of layers made of porous polyethylene is located within a range of 40% to 84% as thick as the thickness of the separator. Thus, the temperature of a battery can be controlled, a reliability is enhanced and a productivity and cyclic characteristics are improved.
    Type: Application
    Filed: January 29, 2004
    Publication date: June 17, 2004
    Inventors: Hayato Hommura, Hiroshi Imoto, Atsuo Omaru, Masayuki Nagamine, Akira Yamaguchi
  • Publication number: 20040072077
    Abstract: In a non-aqueous electrolyte secondary battery including anode and cathode consisting of material capable of doping/undoping of lithium, and non-aqueous electrolytic solution in which electrolyte is dissolved in non-aqueous solvent, flaky graphite having high crystallinity and high electron conductivity is added as conductive agent into the anode and the cathode. Further, granulated carbon or carbon black having specific material property is added as conductive agent in addition to the flaky graphite. Thus, non-aqueous electrolyte secondary battery having long cycle life time and high reliability can be obtained.
    Type: Application
    Filed: November 18, 2003
    Publication date: April 15, 2004
    Inventors: Atsuo Omaru, Naoyuki Nakajima, Masayuki Nagamine
  • Patent number: 6716557
    Abstract: Carbon fiber having cross sectional shape which satisfies area replenishment rate of 0.8 or more is used as anode material for non-aqueous electrolyte secondary battery. Alternatively, since value of fractal dimension of cross section high order structure of the random radial type carbon fiber can be utilized as material parameter for evaluating the cross sectional structure, carbon fiber in which the value of the fractal dimension is caused to fall within the range from 1.1 to 1.8 and the crystallinity has been controlled such that it falls within reasonable range is used as anode material for non-aqueous electrolyte secondary battery. Further, carbon fiber having cross section high order structure such that the central portion is radial type structure and the surface layer portion is random radial type structure is used as anode material for non-aqueous electrolyte secondary battery. Furthermore, it is also effective to use carbon fiber having notch structure at the cross section.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: April 6, 2004
    Assignee: Sony Corporation
    Inventors: Atsuo Omaru, Naoyuki Nakajima, Masayuki Nagamine
  • Publication number: 20040058247
    Abstract: Disclosed is a battery with a light weight and a high energy density. The battery includes a anode 5, having a layer of an anode active material 9 formed on an anode substrate 8, a cathode 6, including a layer of a cathode active material 14 formed on a cathode substrate 13, and a non-aqueous liquid electrolyte 4. The anode substrate 8 includes an anode resin film 11 containing a polymer and an anode metal layer 12 containing an electrically conductive metal. Since the anode resin film 11 reduces the weight of the anode substrate 8 and the anode metal layer 12 imparts electron conductivity to the anode substrate 8, the battery may be reduced in weight without detracting from battery characteristics to increase the energy density.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 25, 2004
    Inventor: Atsuo Omaru
  • Publication number: 20040053131
    Abstract: Provided is a battery with a higher capacity and superior charge-discharge cycle characteristics. A cathode contained in a package can and an anode contained in a package cup are laminated with a separator in between. The separator is impregnated with an electrolyte solution formed by dissolving lithium salt in a solvent. The anode comprises a tin-containing material including metallic tin and an intermetallic compound including tin in the same particle. A higher capacity and superior charge-discharge cycles can be obtained by the tin-containing material.
    Type: Application
    Filed: September 18, 2003
    Publication date: March 18, 2004
    Applicant: Sony Corporation
    Inventors: Hiroaki Tanizaki, Atsuo Omaru
  • Publication number: 20040048160
    Abstract: Disclosed is a battery which is improved in cyclic characteristics at the same time as the battery capacity is increased. On an anode substrate 8, there is formed, by a thin film forming technique, a layer of the active material 10, containing a metal that may be alloyed with lithium as an anode active material. The battery includes an anode 5 containing one or more of a metal not alloyed with lithium, an alloy or a compound containing the metal, and a carbonaceous material capable of doping/undoping lithium ions, as well as the metal that may be alloyed with lithium, a cathode 6 and a non-aqueous liquid electrolyte 4. The metal contained in the anode 5 as an anode active material and which may be alloyed with lithium acts to raise the battery capacity, while the metal not alloyed with lithium, alloys or compounds of this metal or the carbonaceous material suppresses deterioration of the anode 5 attendant on the charging/discharging to improve cyclic characteristics.
    Type: Application
    Filed: September 11, 2003
    Publication date: March 11, 2004
    Applicant: Sony Corporation
    Inventor: Atsuo Omaru
  • Publication number: 20040029012
    Abstract: A non-aqueous electrolyte battery includes an cathode having an cathode mixture layer containing an cathode active material; an anode having an anode mixture layer containing an anode active material which includes a first active material and/or a second active material, where the first active material includes a metal, alloy or compound capable of react with lithium, and the second active material includes a carbonaceous material; and a non-aqueous electrolytic solution. By allowing the anode to contain the first active material in a predetermined amount, and by controlling the packing ratio of the anode mixture layer, the anode is successfully prevented from being degraded due to expansion-and-shrinkage of the anode active material in response to the charge/discharge cycle, and thus degradation of the charge/discharge characteristics of the battery is suppressed.
    Type: Application
    Filed: May 6, 2003
    Publication date: February 12, 2004
    Inventors: Hiroaki Tanizaki, Atsuo Omaru