Patents by Inventor Aurelian Dodoc

Aurelian Dodoc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150205084
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Patent number: 9057964
    Abstract: Imaging optics includes a first mirror in the imaging beam path after the object field, a last mirror in the imaging beam path before the image field, and a fourth to last mirror in the imaging beam path before the image field. In an unfolded imaging beam path between the object plane and the image plane, an impingement point of the chief ray on a used region of each of the plurality of mirrors has a mirror spacing from the image plane. The mirror spacing of the first mirror is greater than the mirror spacing of the last mirror. The mirror spacing of the fourth to last mirror is greater than the mirror spacing of the first mirror. Chief rays that emanate from points of the object field that are spaced apart from another have a mutually diverging beam course, giving a negative back focus of the entrance pupil.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 16, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Mann, Johannes Zellner, Aurelian Dodoc, Claus Zahlten, Christoph Menke, Marco Pretorius, Wilhelm Ulrich, Hans-Juergen Rostalski
  • Patent number: 9036772
    Abstract: A mirror for the EUV wavelength range (1) having a layer arrangement (P) applied on a substrate (S), the layer arrangement having a periodic sequence of individual layers, where the periodic sequence has at least two individual layers—forming a period—composed respectively of silicon (Si) and ruthenium (Ru). Also disclosed are a projection objective for microlithography (2) including such a mirror, and a projection exposure apparatus for microlithography having such a projection objective (2).
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: May 19, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Aurelian Dodoc
  • Patent number: 9019596
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: April 28, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Publication number: 20150055214
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first Intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Inventors: David R. Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20140376086
    Abstract: A projection objective for imaging a pattern provided in an object plane onto an image plane includes: a first objective part to image the pattern provided in the object plane to a first intermediate image, wherein all of the elements in the first objective part having optical power to image the pattern are refractive elements; a second objective part that includes at least one concave mirror to image the first intermediate image to a second intermediate image; and a third objective part to image the second intermediate image to the image plane, wherein all of the elements in the third objective part having optical power are refractive elements. An aperture stop is positioned in the third objective part and there are no more than four lenses in the third objective part between the aperture stop and the image plane. The projection objective has an image side numerical aperture >0.9.
    Type: Application
    Filed: June 27, 2014
    Publication date: December 25, 2014
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf Murai Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 8913316
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: December 16, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Patent number: 8908269
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first Intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Grant
    Filed: December 30, 2013
    Date of Patent: December 9, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David R. Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20140333913
    Abstract: Microlithography projection objectives for imaging into an image plane a pattern arranged in an object plane are described with respect to suppressing false light in such projection objectives.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 13, 2014
    Inventors: Heiko Feldmann, Daniel Kraehmer, Jean-Claude Perrin, Julian Kaller, Aurelian Dodoc, Vladimir Kamenov, Olaf Conradi, Toralf Gruner, Thomas Okon, Alexander Epple
  • Patent number: 8873151
    Abstract: An illumination system of a microlithographic exposure apparatus comprises a condenser for transforming a pupil plane into a field plane. The condenser has a lens group that contains a plurality of consecutive lenses. These lenses are arranged such that a light bundle focused by the condenser on an on-axis field point converges within each lens of the lens group. At least one lens of the lens group has a concave surface. The illumination system may further comprise a field stop objective that at least partly corrects a residual pupil aberration of the condenser.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: October 28, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Sohmer, Aurelian Dodoc, Heiko Feldmann, Wilhelm Ulrich, Gerhard Fuerter, Rafael Egger, Artur Moegele, Michael Raum
  • Patent number: 8858099
    Abstract: An anamorphic objective is provided for imaging an object onto an image acquisition unit. The anamorphic objective has at least one first plane of symmetry and at least one second plane of symmetry. The first plane of symmetry and the second plane of symmetry are oriented perpendicular to one another. The first plane of symmetry and the second plane of symmetry intersect and have a straight line of intersection (intersection line). A first objective section followed by a second objective section are arranged. A diaphragm is arranged between the first objective section and the second objective section. A first anamorphic optical element is arranged in the first objective section. A second anamorphic optical element is arranged in the second objective section. The anamorphic objective fulfills specified conditions and is suitable for generating a stigmatic imaging of the object on the image acquisition unit.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: October 14, 2014
    Assignee: Carl Zeiss AG
    Inventors: Aurelian Dodoc, Christian Bannert, Vladan Blahnik, Holger Sehr
  • Publication number: 20140300957
    Abstract: A projection objective includes a plurality of optical elements configured so that, during use of the projection objective, radiation follows a path through the projection objective to image an object field in an object surface onto an image field in an image surface. The optical elements define a first group of refractive optical elements; a second group of optical elements downstream of the first group of refractive optical elements along the path, the second group of optical elements comprising a concave mirror; and a third group of refractive optical elements downstream of the second group of optical elements along the path. The projection objective has a first pupil surface along the path, and the projection objective comprises a Fourier lens group comprising a negative lens group arranged so that an absolute value of a Petzval radius at the first pupil surface is greater than 150 mm.
    Type: Application
    Filed: June 23, 2014
    Publication date: October 9, 2014
    Inventor: Aurelian Dodoc
  • Publication number: 20140293256
    Abstract: Microlithography projection objectives for imaging into an image plane a pattern arranged in an object plane are described with respect to suppressing false light in such projection objectives.
    Type: Application
    Filed: June 10, 2014
    Publication date: October 2, 2014
    Inventors: Heiko Feldmann, Daniel Kraehmer, Jean-Claude Perrin, Julian Kaller, Aurelian Dodoc, Vladimir Kamenov, Olaf Conradi, Toralf Gruner, Thomas Okon, Alexander Epple
  • Patent number: 8804234
    Abstract: A catadioptric projection objective for imaging a pattern onto an image plane includes: a first objective part for imaging the pattern into a first intermediate image; a second objective part for imaging the first intermediate image into a second intermediate image; and a third objective part for imaging the second intermediate image onto the image plane. A first concave mirror having a continuous mirror surface and a second concave mirror having a continuous mirror surface are upstream of the second intermediate image. A pupil surface is formed between the object plane and the first intermediate image, between the first and the second intermediate image, and between the second intermediate image and the image plane. A plate having essentially parallel plate surfaces is positioned in the first objective part near the pupil surface. At least one plate surface is aspherized to correct for aberrations.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: August 12, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. Von Buenau, Hans-Juergen Mann, Alexander Epple
  • Patent number: 8780441
    Abstract: The disclosure provides a catadioptric projection objective which includes a plurality of optical elements, including first, second and third refractive objection parts. Optical elements arranged between an object surface and a first pupil surface form a Fourier lens group that includes a negative lens group arranged optically close to the first pupil surface. The Fourier lens group is configured such that a Petzval radius RP at the first pupil surface satisfies the condition: |RP|>150 mm.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 15, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Aurelian Dodoc
  • Patent number: 8773638
    Abstract: A microlithographic projection exposure apparatus includes a primary illumination system producing projection light, a projection objective and a correction optical system. The correction optical system includes a secondary illumination system, which produces an intensity distribution of correction light in a reference surface, and a correction element which includes a heating material and is arranged in a plane that is at least substantially optically conjugate to the reference surface such that the correction light and the projection light pass through at least one lens contained in the projection objective before they impinge on the correction element. All lenses through which both the correction light and the projection light pass are made of a lens material which has a lower coefficient of absorption for the correction light than the heating material contained in the correction element.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: July 8, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Aurelian Dodoc, Sascha Bleidistel, Olaf Conradi, Arif Kazi
  • Patent number: 8730572
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: May 20, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: David Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. Von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer
  • Publication number: 20140118713
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Application
    Filed: December 30, 2013
    Publication date: May 1, 2014
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Publication number: 20140111786
    Abstract: A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Inventors: Aurelian Dodoc, Wilhelm Ulrich, Alexander Epple
  • Publication number: 20140111787
    Abstract: A catadioptric projection objective for imaging a pattern provided in an object plane of the projection objective onto an image plane of the projection objective has a first, refractive objective part for imaging the pattern provided in the object plane into a first intermediate image; a second objective part including at least one concave mirror for imaging the first Intermediate imaging into a second intermediate image; and a third, refractive objective part for imaging the second intermediate imaging onto the image plane; wherein the projection objective has a maximum lens diameter Dmax, a maximum image field height Y?, and an image side numerical aperture NA; wherein COMP1=Dmax/(Y?·NA2) and wherein the condition COMP1<10 holds.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Inventors: David R. Shafer, Wilhelm Ulrich, Aurelian Dodoc, Rudolf M. von Buenau, Hans-Juergen Mann, Alexander Epple, Susanne Beder, Wolfgang Singer